Real-Time TeamForge

Project Life Cycle Objectives Proposal

by Bishop Wilkins and Andrew Nelson
for CSE 403, Summer 2006, with Valentin Razmov
Operational Concepts

Have you ever gone to check your code in to CVS or your work repository system of choice only to find that a team member has made drastic changes to the file you were editing, and now you have to spend minutes or hours carefully merging your work in order to get the desired result?
What if instead you could have seen those changes that they were adding as they added them and discussed together on the spot how to incorporate both sets of changes cleanly and quickly?
With Real-Time TeamForge, an entire project can be developed from start to finish as though the whole team were working in the same room, with all the relevant documents laid out and manipulated on a community table for everyone to see and contribute to in real time. It is a new type of repository and versioning system that by-passes the hastle-prone, disjointed “check-out”, “update” and “commit” processes of the past with seamless, real-time teamwork. It provides the file-versioning system to track changes, backup, and revert files, built-in chat functionality to connect all the people working on a given file no matter how far apart they are, and, potentially, the plug-ins necessary to collaboratively edit any type of file that a project might include.

Although implementing the entire envisioned suite of collaborative file editor plug-ins is beyond the scope of what we think is feasible in one summer course, we propose that the core of the TeamForge platform – along with a collaborative text editor plug-in as a "proof-of-concept" plug-in – could be built and released to the open-source community for further development within the timeframe of this CSE 403 course.

System Requirements
After a team member logs into the TeamForge website and chooses which of their projects they want to work on, they see the main TeamForge interface.
[image: image1.png]Proyect /?[E

[Progect| R LenAME TXT

TEAM
& DlscussioN.
PANE

USERNAMBLZ.! - A~
DA

SAY: e A~

On the left, is a tree-view browser listing all the files in the project.
On the upper right, is the plug-in collaborative editor for the file currently being edited. These plug-in editors could potentially range from photo editors to CAD and 3-D modeling tools, to sophisticated code editors and compilers, that would make TeamForge a real-time, collaborative IDE. For the scope of this summer’s project, just the framework API for developing this plug-ins is being proposed, along with a simple collaborative text file editor as an example plug-in.

On the lower right is the team discussion pane.
[image: image2.png]TEAM plscussioN PANE DETALC

ALL\/ FILENAMED TIXT\/HLENAME 2 TXT\

Ep TN Fiienaue | T¢T § USERNAMET | Us ERNARE L

USernami: Blah blah blah 7
Us ERNAMEZ: Blolh, Bl Bletr.

- —
Us EpNAME 17 Blab blaly blal, blahl

There is a “chat tab” for each file a user is editing. This user and all the other users who are currently editing the file are listed on this tab and can discuss the changes they are making there. Logs of the time-stamped chats for each file in a project are saved permanently, and accessible by scrolling up in the chat pane. So, the team discussion pane also doubles as a file change record. Even if a single team member just adds a change to a file individually, that can be noted in the chat pane, where it will inform the next person to edit the file.
There is also an “All” chat tab that all online users are automatically logged into when they open the project, where all team members can make important announcements or note changes that everyone should be informed of immediately.
System and Software Architecture

[image: image3.png]

We propose that TeamForge be created as an entirely web-based application, with nothing to download or install on the client end. Once a TeamForge server is running, team members just start up their browser, log in, and go to work.

All development on TeamForge will therefore be server-side. We will use Ruby on Rails, a promising-looking web development framework that provides access to sophisticated technologies like MySQL and Ajax (asynchronous Javascript and XML) through the Ruby programming language and a simple, intuitive looking API.
Life Cycle Plan

Anyone from students to professionals could benefit from TeamForge. To be able to serve these customers by August 18th we will need a team of 8 people. TeamForge is intended to be open source so that after the core platform is developed other plug-ins can be developed and current plug-ins can be enhanced.

Currently the main stakeholders would be the team that is developing TeamForge and the potential users of this service. After the first release, the users will be able to provide feedback about the service and how items could be implemented better. Since TeamForge will be operating in real-time, it will be essential that users try out the service to make sure that it performing adequately.
The team developing TeamForge will have to work quickly because the project will only have 6 weeks to be developed. One way to help avoid problems is to have some resources dedicated to testing the system so that large bugs do not need to be fixed at the end of our tight schedule. This along with addressing the major risks in the next section first should even out the work load on the development team.
Feasibility Rationale

This is a feasible project, but there are a lot of risks also. With TeamForge if there is extra time there are ample parts that could be “up scoped” such as the addition of other editors. Initially, the plan is to create an extremely simple text editor that deals with plain text and the only feature other than adding and deleting text is the ability to work on the same piece of text at the same time as someone else who is involved in your project. As seen other online services such as Gmail, it is possible to have a web page that can support chatting and also text editing.

One of the largest risks for TeamForge is if it will be possible to edit the same text that another user is editing. If we can not develop a program that can have multiple users edit text at the same time then we will have failed, since there are many other online services which address this user need. Another large risk is that learning new languages and platforms (some examples are: Ruby on Rails, MySQL, Ajax, PHP, CSS, etc…) for developing the program will take too long. Another risk is that it will be too difficult to implement versioning, in which case we would need to make it so that files could be saved in different names so users could keep old versions of their documents. The last major risk would be making it easy to create and integrate a new plug-in for the document editor.
TeamForge is a feasible project, but to be successful the development team will have to work efficiently and quickly. It will be essential that the developers for TeamForge finish their work on schedule and are willing to put forth extra effort to build a high quality core platform. If the project is chosen, the rewards for finishing it would be tremendous and it would also be something that many of the developers could use and extend in the future.

