Test Plan: TeamForge

Andrew Nelson, Bishop Wilkins, Ky Le, and Yoshito Kosai

8/10/06

This document outlines the testing methodology our team uses to test our product TeamForge, along with the set of test cases we use to cover the most important aspects of the product. These test cases are a work in progress, intended to be continually expanded to satisfy our customers that all areas of the product they are concerned about have been checked out.

Testing Methodology

At the highest level, our testing philosophy embraces two widely-used and effective software development practices we will here call “Daily Smoke Tests with Build” and “Code Unit Tests Before Coding Components Under Test”.
Daily Smoke Tests with Build

We do a full build of TeamForge each night. This consists of checking out a clean, current version of TeamForge from the CVS repository and running through the test cases listed in the “Test Cases” section below. Of these, the Unit Tests are automatically run by calling Rake (Ruby’s Make-like build program) with no extra parameters from the root TeamForge directory (more about unit tests below). We initially tried to automate the rest of the test cases with AutomatedQA’s TestComplete, but the resulting recorded test scripts were too brittle and system-specific to be useful, so for now we are conducting these tests by hand. We do not currently have the time to develop more robust automated test scripts on TestComplete, or the resources to acquire a test automation utility that is faster to learn and use.
Repository information is:

CVS root: :ext:[username]@teamforge.cvs.sourceforge.net:/cvsroot/teamforge

Protocol: Secure shell (:ext:)
Server: teamforge.cvs.sourceforge.net
Repository folder: /cvsroot/teamforge
Module: teamforge
Code Unit Tests Before Coding Components Under Test
Much of our TeamForge system is testable through code, since there is not much graphical output or other output that would require human input to determine whether or not it is correct. Therefore it is possible to code tests for new classes and methods that we write before writing the classes and methods themselves. These unit tests form another part of the daily smoke test suite described above, and are run using Rake, also as mentioned above.

Test Cases
Below are our current test cases, comprised of tests for the features described in our TeamForge specification and architecture documents. It is expected that this set of test cases will continue to grow as TeamForge is developed. The cases are organized into four categories: Unit tests, Installation, Login/Registration, and Project List/Creation. The cases include structural, functional, data, platform, and operational tests. Later categories to be added include File Browser Pane, Plug-in API, Repository Input/Output, and Example Text Editor Plug-In.

Unit Tests
The automatic unit tests are written in the Ruby language and can be found in the test\unit directory of the TeamForge project.

These tests are run by typing “rake” at the command prompt while in the teamforge project root directory.

Current unit tests include:

Create, list, show, edit, update, and destroy tests for project models.

Create, list, show, edit, update, and destroy tests for paragraph models.
Create, bad name and bad password tests for user models.
(These have mostly been provided for us by the framework and open source code we are using.)
Installation Tests
Server was Installed Successfully

Precondition: User follows installation steps (see ReleaseNotes.rtf) to install a server.
Test: Check file and directory structure on server.

Expected Postcondition: File and directory structure and settings match expected structure and settings: root directory contains:
app CVS doc log Rakefile README_LOGIN test vendor

config db lib public README script tmp

app directory contains: controllers CVS helpers models views

Client Can Access Server

Precondition: User follows installation steps (see ReleaseNotes.rtf) to install a server.
Test: Client navigates to their TeamForge homepage via browser (http://[installed server address]/account/home).
Expected Postcondition: TeamForge homepage appears.
Login/Registration Tests
Registration Link Leads to Registration Page
Precondition: A new user has navigated successfully to the TeamForge homepage.
Test: User clicks “Registration”.
Expected Postcondition: The user sees the TeamForge New User Registration page.
Incorrect Registration Submission Leads to Registration Page with Error Explanation

Precondition: A new user has navigated to the TeamForge New User Registration page.
Test: User enters a password with under five characters.
Expected Postcondition: The user sees the Registration page with an error message at the top explaining that five or more characters are required.
Correct Registration Submission Creates New User in Database

Precondition: A new user has navigated to the TeamForge New User Registration page.
Test: User enters valid information and submits.
Expected Postcondition: New user information appears in correct tables in the database.
Correct Registration Submission

Precondition: A new user has navigated to the TeamForge New User Registration page.
Test: User enters valid information and submits.
Expected Postcondition: User sees a new, empty Project List Page.
Sign In With Registration Leads to Project List Page
Precondition: A registered user has navigated successfully to the TeamForge homepage.
Test: User signs in from homepage.
Expected Postcondition: User sees their Project List Page.
Project List/Creation Tests
Projects List Page Displays “No Projects” Message For Users with No Projects

Precondition: A user with no projects specified has navigated to the Project List Page.
Test: User looks at the page.
Expected Postcondition: The page displays an empty projects list.
Projects List Page Displays All Projects for a User with Projects

Precondition: A user with one or more projects specified has navigated to the Project List Page.
Test: Uesr looks at the page.
Expected Postcondition: All projects the user has started or joined appear on the page.
Clicking “Start Working On” for a Project Leads to Main Interface with that Project

Precondition: A user with one or more projects specified has navigated to the Project List Page.
Test: User clicks on “start working on” for a project.
Expected Postcondition: The main interface appears, with the document browser for the selected project on the left.
Clicking New Project Leads to the New Project Page

Precondition: A user has navigated to the Project List Page.
Test: User clicks the “New Project” link.
Expected Postcondition: The New Project Creation Page appears.
Correct New Project Page Submission Leads to Main Interface with New Project

Precondition: A user has navigated to the New Project Creation Page.
Test: User correctly fills out the form fields and submits.
Expected Postcondition: The project list appears, with the new project included.
