

Valentin Razmov

23 Jun 2006

CSE403, Summer'06, Section 01

"Anchoring the Software Process", Barry Boehm

23 Jun 2006

CSE403, Summer'06, Section 01

Outline

- Life Cycle Objectives Review milestone group assignment #1
- The five constituent elements of a Life Cycle Objectives Review

23 Jun 2006

CSE403, Summer'06, Section 01

Life Cycle Objectives (LCO) Review milestone

- Group assignment #1: Project Proposals
 - ⁿ You need to work in pairs, so look for a partner
- n Assignment is available on the course web
- Due next Wednesday, June 28 @ 10pm
- Project Proposal presentations in-class on Thursday, June 29
 - _n ~10 minutes per presentation, so we can hear all
- Today we cover the necessary elements of a proposal (a.k.a. Life Cycle Objectives Review).

23 Jun 2006

CSE403, Summer'06, Section 01

Life Cycle Objectives Elements

- Operational Concepts
 - what is it? (High-level scope and objectives)
- **n System Requirements**
 - Mhat does it do for us? (Lower-level actual planned deliverables)
- **n** System and Software Architecture
 - How? (Technically)
- **n** Lifecycle Plan
 - Mho wants it? Who'll support it? (Resources needed)
- **n** Feasibility Rationale
 - n Given the constraints, is this realistic (can it be built)?
 23 Jun 2006 CSE403, Summer'06, Section 01

1: Operational Concepts

- **n** Top-level system objectives and scope
 - Mhat problem are you trying to solve? Why? For whom?
 - User community, environment, major benefits?
 - Goals and non-goals
 - _n To set realistic expectations in the audience

Tip: This is what you should be able to explain in a 1-minute pitch (if you didn't have more time) – a.k.a. "an elevator pitch."

Tip: It takes practice to refine this, so start early.

23 Jun 2006

CSE403, Summer'06, Section 01

2: System Requirements

Essential features of the system

- What does the customer want from this system?
 - Look from the user's perspective
 - **Tip:** Avoid details at the start; there's time to evolve.
- Discuss main capabilities, outcomes, reliability and performance needs, appearance
- Customer involvement is important and beneficial
 - They know best what their interests and needs are, including what fits in their daily work and life patterns
 - ... even if they may not always express it very well They understand the domain better than developers do.
 - Working jointly and openly with customers helps build trust, so any necessary changes are more acceptable.

23 Jun 2006

CSE403, Summer'06, Section 01

Essential features of the system

- n This will be your *initial* written specification
 - Customers can review and sign off quickly or complain early.
 - $_{\scriptscriptstyle \rm I\!\!I}$ Putting it in writing makes it less ambiguous than saying it.
 - Forces you to think of major functional areas and seek architectural defects early
 - "Failing to write a spec is the *single biggest unnecessary risk* you take in a software project" -- Joel Spolsky
- Be concise yet complete
 - People get attached to their work even if it is no longer of value.
- Tip: A picture / diagram is (often) worth 1000 words.
- **Tip:** Scenarios and stories help, but avoid being verbose.

23 Jun 2006

CSE403, Summer'06, Section 01

3: System and Software Architecture

High-level technical description but with enough detail to allow feasibility analysis

- _n Unlike the previous two elements, this is technical.
- Architectural flaws will only deepen as you go forward, so look for alternatives while it's still early.
- Tip: Try to come up with several (at least 3) alternative architectural designs.
- Tip: Identify clients, servers, major software components, external 3rd party software, and the interactions between them.
- Tip: Pictures say 1000 words.

23 Jun 2006

CSE403, Summer'06, Section 01

4: Life Cycle Plan

Identify stakeholders and their roles

- ⁿ Users, architects, developers, testers, managers, etc.
- n WWWWWHH:

Why / What / When / Who / Where / How / How

- ⁿ Objectives: Why is the system being developed?
- Schedules: What will be done, When?
- Responsibilities: Who will do it? Where are they?
- ⁿ Approach: <u>H</u>ow will the job be done?
- n Resources: How much of each resource?
- n **Tip:** Make your best (educated) guess. Some of this will necessarily change. This is *not* a contract.

5: Feasibility Rationale

Conceptual integrity and compatibility

- _n Can this really be built with the available resources?
- Identify project risks
- What are the assumptions? Any unwarranted ones?
 - $_{\scriptscriptstyle \rm II}$ "If you make one or two ridiculous assumptions, you'll find everything I say or do totally justified."
 - -- Ashleigh Brilliant, 1671
- Tip: Keep asking "why" until the assumptions emerge.
 - n E.g., "Why do we need this?", "Why is this good?"
 23 Jun 2006 CSE403, Summer'06, Section 01