Updated Schedule of Remaining
Class-Related Deliverables

n Fri, Aug 11 @ 10pm: indiv assignment #2 due
n Sun, Aug 13 @ 10pm: final project release due
» Mon, Aug 14, in class: final project demos / presentations
n Mon, Aug 14 @ 10pm: peer review #2 due
n Wed, Aug 16 @ 10pm:
indiv assignment #2 responses due
peer review #2 viewing and usefulness feedback due

» Thu, Aug 17 @ 10pm: final take-home exam due (online
submission)

» Fri, Aug 18, before class: final take-home exam due (on

Lecture 20:
* Refactoring (Part II)

"If bug rates are to be reduced, each function needs to
have one well-defined purpose, to have explicit single-
purpose inputs and outputs, to be readable at the point
where it is called, and ideally never return an error
condition.”

paper) _ o -- Steve Maguire, from “Writing Solid Code”
n Fri, Aug 18 @ 10pm: final questionnaire due
10 Aug 2006 CSE403, Su'06, Lectures 20b-21 Valentin Razmov 10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov
i Outline References
n ecommended:

n

n

n Practical suggestions

n When refactoring works and when it does not

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

n Refactoring resources online, by Martin Fowler,
http://www.refactoring.com/catalog/

Other relevant resources:

n Applied Software Project Management, by Andrew Stellman and
Jennifer Greene, 2006.

n Writing Solid Code, by Steve Maguire, 1994.

n Agile Software Development: Principles, Patterns, and Practices,
by Robert Martin, 2003.

n Professional Software Development, by Steve McConnell, 2004.

n Sustainable Software Development — An Agile Perspective, by
Kevin Tate, 2006.

n Freakonomics: A Rogue Economist Explores the Hidden Side of
Everything, by Steven Levitt and Stephen Dubner, 2005.

n D(»)sgégn Patterns Explained, by Alan Shalloway and James Trott,

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

5 3 3 3 3 35 >

Types of
Refactoring

actoring to patterns
Renaming (methods, variables)
Extracting code into a method
Changing method signatures
Performance optimization e
Naming (extracting) “magic” constants
Extracting common functionality éincluding duplicate code) into a
service / module / class / metho
Splittin% one method into several to improve cohesion and
readability (by reducing its size)
Pgﬁting statements that semantically belong together near each
other
Exchanging risky language idioms with safer alternatives
CIarifying a statement (that has evolved over time and/or that is

hard to “decipher”)
10 Aug 2006

CSE403, Summer'06, Lecture 20b Valentin Razmov

Language and Tool Support
for Refactoring

n Modern IDEs (e.g., Eclipse, Visual Studio)
support:

variable / method / class renaming

method or constant extraction

extraction of redundant code snippets

method signature change

extraction of an interface from a type

method inlining

providing warnings about method invocations with

inconsistent parameters

» help with self-documenting code through auto-completion

s 3 3 3 3 35 3

n Older deveIoEment_ environments (e.g., vi,
Emacs, etc.) have little or no support for these.
» Discourages programmers from refactoring their code

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

When Making Code Changes...

n In what order would you do the following?
(Please, number them 1-3.)

Make the planned
code changes

\ Refactor the code

Write unit tests to ensure that
any conditions that need to
be met are indeed met

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

Recommended Actions When
i Making Code Changes

1. Write unit tests to ensure that any
conditions that need to be met are indeed
met

» Both before and after any refactoring or other
changes you do

2. Refactor the existing code
» To accommodate any necessary code changes
and to make sure that the tests still pass

3. Make the planned code changes

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

A Bit of Practical Advice

n Prioritize what needs to be refactored
» Not all parts of your code are equally important at all
times.
» This way it won't feel like a useless, time-consuming
exercise — but like something that helps you to more
effectively do your job.

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

Refactoring in Context: s
Small Startup Companies

n List one reason why refactoring should (or
should not) be done in small startups.

Should:

Should not:

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

Refactoring in Context:
Small Startups, Pros

n How refactoring may help in small startups:

» It's an investment in quality, regardless of the size of
the company

» Ideas and technologies are typically cutting edge and
evolving quickly over time, so the code needs to also
evolve at the same pace, to make it easier (not harder)
to do the next change when it becomes necessary.

» Even with a small team, if a team member suddenly
quits, it will be easier to take over his/her code and be
able to maintain and extend it.

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

Refactoring in Context:
Small Startups, Cons

n How refactoring may not help in small startups:
» The company may never need to do another version
(if the product is unsuccessful).
» The company wants to get to market as fast as
possible, even at the expense of quality.

» The typical customers of version 1.0 products want
something working, not solid products.

« “[They're] so busy sawing, there’s simply no time to
sharpen the saw.” J

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

Refactoring in Context: s
Larger Companies

n List one reason why refactoring should (or should
not) be done in /arger companies.

Should:

Should not:

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

Refactoring in Context:
Larger Companies, Pros

n How refactoring may help in larger companies:
» The users demand quality or else will turn to the
competition.
» The company aims the product for the long haul, so
long-term investments are justified.
» More people work on the development of the product
over larger periods of time
« The original code writer(s) may not be around to
explain what they intended with a piece of code.

They'll have saved themselves 5 minutes (by not
clarifying) at the expense of 5 days for those who follow.

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

Refactoring in Context:
Larger Companies, Cons

n How refactoring may not help in larger
companies:
» There's typically less sense of ownership of the code
or the product than in smaller companies
» You don't know the “poor” people who will have to
maintain your code, so you care less about them.
» ... in contrast to a startup where the maintainer will be
either you, or the person sitting next to you.
» Large companies are sometimes just former small
companies that never realized they had grown
n gompany culture may not reward programmers for
oing it
« E.g.: if performance evaluations are mostly based upon
delivering immediate results on competing projects...

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

Refactoring — When to Do It?

n Refactoring is necessary from a business

standpoint too

» Helps to increase schedule predictability and achieve
higher outputs at lower costs

» In general, ROI for improved software practices is
500% (!) or better

» By doing refactoring a team saves on unplanned
defect-correction work

» When is refactoring necessary?
» Best done continuously, along with coding and
testing
» Very hard to do late, much like testing
» Often forced before plunging into version 2

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

Food for Thought: s
Analyzing the Incentives

ho is supposed to do the refactoring?
(A) programmer
(B) management
(C) maintainer
(D) user

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

Food for Thought: s
*Analyzing the Incentives (cont.)

Who benefits from the refactoring?
(A) programmer
(B) management
(C) maintainer

(D) user

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

Analysis of the Incentives

i Shows...

n Those who can do the job often do not
have the incentive to do so.

n Those who need the job done can not do
it themselves.

Result:
Classic case of misalignment of incentives
that often leads to situations where great
ideas get stalled indefinitely.

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

Conclusion:
Top Reasons for Refactoring

n Improving maintainability
n ... and hence productivity!

n Responding to changes in the spec / design by
improving the code structure
» Or proactively preparing for such changes

10 Aug 2006 CSE403, Summer'06, Lecture 20b Valentin Razmov

Lecture 21:
Software Maintenance and

* Code Reviews

Outline

n Software maintenance
n Code reviews

10 Aug 2006 CSE403, Summer'06, Lecture 21 Valentin Razmov

10 Aug 2006 CSE403, Summer'06, Lecture 21 Valentin Razmov
Resources
n Rapid Development, by Steve McConnell
» Ch. 4.3, 23
n Test Driven Development: By Example, by Kent
Beck

n Code Complete, by Steve McConnell

10 Aug 2006 CSE403, Summer'06, Lecture 21 Valentin Razmov

What is Software Maintenance?

n Producing new (versions of) software under the
constraints of existing software
» Backwards compatibility is often assumed / required

n Comprises all phases of the lifecycle, starting
with requirements gathering
n Another turn of the spiral

10 Aug 2006 CSE403, Summer'06, Lecture 21 Valentin Razmov

Conflicting Developer Hopes
about Software Maintenance

n The hope is that you (and your company) will
get to the maintenance stage.

» Condition: the company has been selling the products
successfully and there is demand for future versions

n Most developers hope that they won't have to
deal with maintenance.

» It's harder to maintain (someone else’s) code than it is
to write a new one.

10 Aug 2006 CSE403, Summer'06, Lecture 21 Valentin Razmov

In Reality, Maintenance...

n .. IS what you do most of the time.

n ... IS Often done as an afterthought, turning
it into a nightmare.
» You have to think ahead of time how you (or someone
else) are going to maintain the code later.
» Refactoring is crucial
« ... but it should be done regularly and must start early

n ... is Often given to junior developers.
» “This way they'll learn the guts of the system better.”
n Shhht!!! — senior developers don't want to work on
maintenance themselves.
» Result: brittle code with little conceptual or design

integrity; even more maintenance headaches to come.
10 Aug 2006 CSE403, Summer'06, Lecture 21 Valentin Razmov

The Maintenance Spiral: Viewed
through an Influence Diagram

unior devs in maintenance => lower code quality
Lower code quality => code is harder to maintain
Hard to maintain code => those with a choice
(senior devs) prefer to avoid doing maintenance
Fewer senior devs in maintenance => more junior

devs in maintenance
Code Quality
Junior Devs in
Code Is Hard
to Maintain
Senior Devs in
Maintenance

How do we break out of the positive feedback loop?

10 Aug 2006 CSE403, Summer'06, Lecture 21 Valentin Razmov

Code Reviews —
What and Why?

n What: A practice whereby one needs to get a
sign-off before committing changes / new code

» Why: ...

10 Aug 2006 CSE403, Summer'06, Lecture 21 Valentin Razmov

Code Reviews —
Motivations Behind the Practice

n Ensures that more than one person has
seen every piece of code
» The prospect of someone else reviewing your code
raises the quality threshold.
» Even if someone is absent, another person has a clue.

n Forces code writers to articulate decisions
and to participate in the discovery of flaws

n Allows junior personnel to get early hands-

on experience without hurting code quality

n Pairing them up with experienced developers who can
answer subtle questions and provide valuable feedback

10 Aug 2006 CSE403, Summer'06, Lecture 21 Valentin Razmov

Mechanics of Code Reviews

n Done before committing code to a repository and
incorporating it into a new build

n Review includes suggestions for improvement on
a logical and/or structural level, to conform to a
previously agreed upon set of quality standards.
» Code review feedback often leads to a refactoring

step, followed by a second code review.

n Reviewer attests that code is maintainable and

meets the established quality standards.

n Both code writer and reviewer are accountable
for allowing the code to be committed.

10 Aug 2006 CSE403, Summer'06, Lecture 21 Valentin Razmov

Code Review Tool Support

n Made easy by advanced tools that:
» integrate with configuration management systems
» highlight changes (i.e., diff function)
« allow traversing back into history

n E.g.: Eclipse offers such support

10 Aug 2006 CSE403, Summer'06, Lecture 21 Valentin Razmov

In Reality...

n Code reviews are a common practice.
n Code reviews can become perfunctory if:

n ... hot part of the (organization / company) culture

» “Let’s just quickly get it over with, because we've got
important work to do.”

» ... done without proper tool support
» “This is going to be a pain; let’s pray it'll soon be over.”

10 Aug 2006 CSE403, Summer'06, Lecture 21 Valentin Razmov

Parting Thought...

“Don't do anything that you don’t want to appear
on the front page of the newspaper.”

» Sound advice beyond the domain of writing
software!

10 Aug 2006 CSE403, Summer'06, Lecture 21 Valentin Razmov

