Lecture 19:
* Software Quality (Part II)

Conway's Law:

“ The structure of a computer
program reflects the structure
of the organization that built it.”

09 Aug 2006 CSE403 Summer'06 Lecture 19b Valentin Razmov

* Outline

n
n

n How do we measure quality?

n How do we improve software quality?

09 Aug 2006 CSE403 Summer'06 Lecture 19b Valentin Razmov

Components of Quality
(discussed previously)

n Quality comprises (but is not limited to):
» Requirements quality
» Design quality
» Code quality
n Test quality
» Documentation quality

n Given limited resources, which of these do you
consider more important to pay attention to? Why?

09 Aug 2006 CSE403 Summer'06 Lecture 19b Valentin Razmov

How Do We Measure Software
Quality?

n Software is never perfect.
» We can test it, but...
» Fundamentally, we can not ensure it is free of defects.

n What can be done to assess the quality then?
» Many engineering disciplines use standards for quality.
» In software, there are few standards, and all (viable)
ones assess the quality of processes, not products.
» Most non-trivial properties of software (code) cannot be
inferred or verified, because of the Halting Problem.
» We are forced to link process quality to product quality.

Conway's Law: “ The structure of a computer program
reflects the structure of the organization that built it."

» E.g.: CMM (Capability Maturity Model) assesses the quality
of teams/organizations through their processes.
09 Aug 2006 CSE403 Summer'06 Lecture 19b Valentin Razmov

Mechanisms for Raising s
*the Quality of Software

n Assume you are brought in on an ongoing software
project plagued by poor quality. What one or two
approaches (mechanisms) would you propose to
help raise the quality of the software in production?
» Make assumptions as needed, to concretize the question.

09 Aug 2006 CSE403 Summer'06 Lecture 19b Valentin Razmov

Mechanisms for Raising the s
uality of Software: Some Ideas

Which of the following mechanisms do you use (or plan
to use) on your project? Circle all that apply.

a) Involvement / frequent iterations with customers and other stakeholders

b) Pair programming

c) Code reviews (not limited to “code”; requirements/design review, etc.)

d) External auditing

e) Using automated tools Ee.g., static analysis, code coverage, IDEs, etc.) to
help discover non-trivial properties that affect quality

f) Refactoring

g) Code integration (if not already in place)

h) Testing: integration testing, regression testing, acceptance testing;
automated testing; test-driven development (with unit testing)

iy Component reuse

j) Team building activities

k) Establish (or ensure the presence of) clear responsibilities within the team

I) Realistic up-to-date scheduling

09 Aug 2006 CSE403 Summer'06 Lecture 19b Valentin Razmov

n

Recipes for Creating Disasters
(a.k.a. Poor Quality Products)

gnore what the customers say they want — the
developers surely must know better.

Put in all the features that could potentially ever be
useful.

Do not worry about quality aspects (and ignore the
related practices) until the deadline approaches.

Do not waste time on design or documentation —
after all, code is the most important thing and time
is already too short to do all that needs to be done.

09 Aug 2006 CSE403 Summer'06 Lecture 19b Valentin Razmov

Lecture 20:
M Refactoring

Question: Is there anything wrong with this code?

char b[2][10000],*s,*t=b,*d, *e=b+1,**p;main(int c,char**v)
{int n=atoi(v[1]);strcpy(b,v[2]);while(n--){for(s=t,d=e;*s;s++)
{for(p=v+3;*p;p++)if(**p==*s){strcpy(d,*p+2);d+=strlen(d);

goto x; }*d++=*s;x:}s=t;t=e;e=s;*d++=0; }puts(t); }
09 Aug 2006

CSE403 Summer'06 Lecture 20 Valentin Razmov

Outline

n Motivation and definition of refactoring

n Playing with real code examples

n Main refactoring strategies

n When refactoring works and when it does not

09 Aug 2006 CSE403 Summer'06 Lecture 20 Valentin Razmov

References

ecommended:))
n Refactoring resources online, by Martin Fowler,
http://www.refactoring.com/catalog/

Other relevant resources:

n Applied Software Project Management, by Andrew Stellman and
Jennifer Greene, 2006.

n Writing Solid Code, by Steve Maguire, 1994.

n Agile Software Development: Principles, Patterns, and Practices,
by Robert Martin, 2003.

n Professional Software Development, by Steve McConnell, 2004.

n Sustainable Software Development — An Agile Perspective, by
Kevin Tate, 2006.

n Freakonomics: A Rogue Economist Explores the Hidden Side of
Everything, by Steven Levitt and Stephen Dubner, 2005.

n é)(»)sgégn Patterns Explained, by Alan Shalloway and James Trott,

09 Aug 2006 CSE403 Summer'06 Lecture 20 Valentin Razmov

Motivating Question

n Many software products get completely
rewritten or abandoned after a few versions
and/or several years.

| What might be causing this?

09 Aug 2006 CSE403 Summer'06 Lecture 20 Valentin Razmov

Motivating Question (cont.)

n Many software products get completely
rewritten or abandoned after a few versions
and/or several years.

n One possible (and correct) cause is:

» Code evolves to meet evolving business needs and
developer understanding.

n If its structure does not evolve too, it will deteriorate
(“rot”) over time, becoming increasingly hard to
maintain and extend.

» Related terms: “code rot”, “spaghetti code”

09 Aug 2006 CSE403 Summer'06 Lecture 20 Valentin Razmov

More Motivation

n Case: Imagine you've written a piece of code
but accidentally deleted and lost it.

Questions:

§ How much time would it take you to
reconstruct from scratch what you had —
the same amount, or more, or less?

§ Would the code have a better design
the second time you write it?

09 Aug 2006 CSE403 Summer'06 Lecture 20 Valentin Razmov

More Motivation (cont.)

n Software is an intellectual product, not a
routine one, so the process of its creation
necessarily goes through revisions.

n If this were not the case:
n ... the programming task could (and should!) be
automated...
» ... and the programmers might need to find more
interesting (and less routine) jobs.

09 Aug 2006 CSE403 Summer'06 Lecture 20 Valentin Razmov

Putting the Evidence Together

Fact:
n Code evolves

» Contrary to the popular myth, most software projects
can not be first designed, then coded, then tested...

« This waterfall lifecycle model does not work well for
most software projects.

Therefore:
n (Evolving) code needs to be maintained to keep
it from becoming a mess.

09 Aug 2006 CSE403 Summer'06 Lecture 20 Valentin Razmov

Refactoring Defined

n "[Refactoring is] the process of changing a
software system in such a way that it does not
alter the external behavior of the code yet
improves its internal structure.” -- Martin Fowler

» Note: Refactoring is not the same as code rewriting; it
is more disciplined and structured (as we will see).

§ What is the “opposite” of refactoring?

§ Why might one want to do that?

09 Aug 2006 CSE403 Summer'06 Lecture 20 Valentin Razmov

Refactoring — Why Do It?

n Why is it necessary?
» A long-term investment in the quality of the code
and its structure
» Code structure deteriorates when last-minute fixes
are made or unplanned features are added.
n Doing no refactoring may save costs / time in the
short term but pays a huge interest in the long run
» “Don't be penny-wise but hour-foolish!”

n Why fix it if it ain’t broken?
Every module has three functions:
s » (@) to execute according to its purpose;
g » (b) to afford change;
» (€) to communicate to its readers.

It it does not do one or more of these, it /s broken.
09 Aug 2006 CSE403 Summer'06 Lecture 20 Valentin Razmov

Examples of What We Don't
Want to Have to Maintain

What is common among the following examples?|

) q=(P<=1)?(p?0:1):(p==-4)? 2: (p+1));

2) while (*a++ = *b--) ;

3) char b[2][10000],*s,*t=b,*d,*e=b+1,**p;main(int c,char**v)
{int n=atoi(v[1]);strcpy(b,v[2]);while(n--){for(s=t,d=e;*s;s++)
{for(p=v+3;*p;p++)if(**p==*s){strcpy(d,*p+2);d+=strlen(d);

goto x;}rd++=*s;x:}s=t;t=e;e=s;*d++=0;}puts(t);}

Hint: Can each of them:
(a) execute according to its purpose?
(b) afford change?

(c) communicate to its readers?
09 Aug 2006 CSE403 Summer'06 Lecture 20 Valentin Razmov

i The Issue of Style

n If you have been a TA or consultant for a
programming course, or if you have tutored
beginning programmers or just curious friends...

n How have you explained to them why style
mattered:
n meaningful variable names
n naming constants
n Standard indentation
0 elc.

even if the code still worked as desired?

09 Aug 2006 CSE403 Summer'06 Lecture 20 Valentin Razmov

Let’s Do Some Refactoring!

09 Aug 2006 CSE403 Summer'06 Lecture 20 Valentin Razmov

class Account {
float principal, rate;
int daysActive, accountType;

Activity: Circle the aspects

that need to be refactored

and briefly state how you
would improve those.

public static final int STANDARD = 0;

public static final int BUDGET = 1;

public static final int PREMIUM = 2;

public static final int PREMIUM_PLUS = 3;
}

float calculateFee(Account accounts[]) {
float totalFee = 0;
Account account;
for (int i=0; i<accounts.length; i++) {
account = accountsl[i];
if (. account.accountType == Account.PREMIUM ||
account.accountType == Account.PREMIUM_PLUS) {
totalFee += .0125 * (account.principal
* Math.exp(account.rate * (account.daysActive/365.25))
- account.principal);

float interestEarned() {
float years = daysActive / (float) 365.25;
float compoundInterest = principal * (float) Math.exp(rate * years);
return (compoundInterest — principal);

3

float isPremium() {
if (accountType == Account.PREMIUM || accountType == Account.PREMIUM_PLUS)
return true;

, else return false; The author’s refactored code
(excerpt from “Applied
float calculateFee(Account accounts[]) { | Software Project Management”)

float totalFee = 0;
Account account;
for (int i=0; i<accounts.length; i++) {
account = accountsf[i];
if (account.isPremium())
totalFee += BROKER_FEE_PERCENT * account.interestEarned();

Extracting common functionality éincluding duplicate code) into a

} return totalFee;
3
return totalFee; .
3 static final double BROKER_FEE_PERCENT = 0.0125;
i{efﬂctonngs in Alphabetical Order —

Types of : Language and Tool Support

Refactoring for Refactoring
n actoring to patterns n Modern IDEs (e.g., Eclipse, Visual Studio)
n Renaming (methods, variables) support:
n Extracting code into a method » variable / method / class renaming
» Changing method signatures » method or constant extraction
» Performance optimization n extraction of redundant code snippets
» Naming (extracting) “magic” constants » method signature change
\ » extraction of an interface from a type

service / module / class / metho

n Splittin% one method into several to improve cohesion and
readability (by reducing its size)

n Ptjﬁting statements that semantically belong together near each
other

n Exchanging risky language idioms with safer alternatives

n CIarifyin‘g a statement (that has evolved over time and/or that is

hard to “decipher”)

09 Aug 2006 CSE403 Summer'06 Lecture 20 Valentin Razmov

method inlining

providing warnings about method invocations with
inconsistent parameters

» help with self-documenting code through auto-completion

n Older deveIoEment_ environments (e.g., vi,
Emacs, etc.) have little or no support for these.
» Discourages programmers from refactoring their code

09 Aug 2006 CSE403 Summer'06 Lecture 20 Valentin Razmov

