Deliverables: Beta Release

- **Installation package**
 - **Application sources and binaries**
 - One-step build for all sources
 - Latest specification & design documents
 - Keep it short! Consider what is/isn't important for customers / devs.
 - Release notes
 - Detailed instructions on how to run a (small) demo of your app Known issues with prioritization, expressed in a bug tracking system
 - Up-to-date test plan
 - Automated tests (unit, acceptance, etc.)
 - **Up-to-date schedule**
 - Including what has been done and what remains to be done

Questions to consider: Who is your audience – customers or developers? What do they expect from this release? What defines success for them?

Deliverables (tentative list): Final Release

nstallation packages Including all of the items below

- Application sources and binaries

 Separate distributions (installation packages) for customers and developers

 One-step build from compiling all sources to creating installation packages

 - User & technical documentation (separate)

 "User doc: What does my mom need to know (and do) to run this product?

 Technical doc: What does a support team need to know to work on version 2?
- Release notes

 Monown issues with associated severities & priorities

 Include a link to your bug tracking system's tasks/tickets that reflect those issues

 Specify where your current code repository is

 Instructions on running the installer and your app are moved to the user doc.
- Latest test plan
- Automated tests (unit and acceptance)
 - Test coverage would be a very welcome addition
- Up-to-date schedule
- Things that have been accomplished (of those that were planned)
 Features (of those initially planned) that are now pushed to version 2 or abandoned

 ... How much would each such feature cost (in terms of dev effort)?

Questions to consider: Who is your audience – customers or developers? What do they expect from this release? What defines success for them?

Lecture 14: Risk Management

"If Las Vegas sounds too tame for you, software might be just the right gamble." -- Steve McConnell

26 Jul 2006

CSE403, Summer'06, Lecture 14

Valentin Razmov

Outline

- The essence of risk and risk management
- Risk management themes: past and upcoming
- Risk exposure and prioritization
- n Coping with risks
- Risk assessment in practice exercises

26 Jul 2006

CSE403, Summer'06, Lecture 14

Valentin Razmov

Resources

- Rapid Development, by Steve McConnell
 - _n Ch. 5, 41;
 - n Ch. 27 (optional)
- Software Requirements, by Karl Wiegers

Definitions of Risks

- a condition that could cause loss or otherwise threaten the success of a project
- 2. a condition characterized by lack of control

26 Jul 2006 CSE403, Summer'06, Lecture 14 Valentin Razmov 26 Jul 2006 CSE403, Summer'06, Lecture 14 Valentin Razmov

Risk Management

- The goal
 - Successful project completion
- The iob
 - Identify the risks
 - Address the risks with specific actions
 - Avoid or resolve the risks before they become real threats to the project
- n Remember this:
 - Mistakes are made on every project.
 - "I feel so much better since I gave up hope."
 - The goal is to get to successful project completion even though mistakes were and will be made.

CSE403, Summer'06, Lecture 14

Valentin Razmov

Levels of Risk Management

- Crisis management
 - Address risks only after they have become problems
- _n Fix on failure
 - Address risks only after they have manifested
- n Risk mitigation
 - Plan for when risks will show, but no attempt to prevent
- - Identify and prevent risks from becoming problems
- **n** Elimination of root causes
 - _n Identify and eliminate factors that make risks possible

26 Jul 2006

CSE403, Summer'06, Lecture 14

Valentin Razmov

It's ALL About Risk Management

Themes we have discussed so far in the course:

- Lifecycle models
- Product proposal pitches
- Requirements gathering techniques
- Prototyping
- Architectural design notations
- Design principles
- Usability design

- Unit testing Incremental releases
- Project retrospectives
- Team conversations
- What risk(s) does each of these practices help to manage / mitigate?

26 Jul 2006

CSE403, Summer'06, Lecture 14

Valentin Razmov

n What are some important risk areas that we have not yet covered in the course?

26 Jul 2006

CSE403, Summer'06, Lecture 14

Valentin Razmov

It's **ALL** About Risk Management: Still to Come

- Some important risk areas that we have not yet covered in the course... but will try:
 - Scheduling and estimation
 - Feature "creep"
 - "Code rot"
 - version configuration chaos
 - Uncalibrated code and product quality
 - Inexperienced personnel
 - Interpersonal conflict
 - Miscommunication Legal hurdles
 - Misalianment of incentives
 - Politics among stakeholders

CSE403, Summer'06, Lecture 14

Valentin Razmov

The Multitude of Risks

- McConnell gives a list of 111 (!) schedule risks.
 - n This does *not* even include risks beyond scheduling.
- How can one pay attention to all possible risks at once and proactively address them?
 - _n It's a full-time job
 - n Managers who are good at it are sought after and get paid very well.
 - Not all potential risks apply to all situations.
 - There are patterns; past experience or data on similar projects/teams can show what to pay extra attention to.
 - Not all risks that apply are equally important or likely. Calls for risk prioritization

26 Jul 2006

CSE403, Summer'06, Lecture 14

Valentin Razmov

Risk Exposure

- $_{n}$ Exposure = P(Loss) * |Loss|
 - E.g.: a 15% chance of slipping a project schedule by 10 weeks => a slippage time of 1.5 weeks is to be expected.
- Allows a more intelligent estimate of the size of the "cushion" period you need for the project
- Don't take the estimation too far!
 - _n It's not precise, after all.

26 Jul 2006

CSE403, Summer'06, Lecture 14

Valentin Razmov

4

Risk Prioritization

- Compute the risk exposure for each risk.
- Sort all risks by their exposure: from high to low.
- Move large-loss risks up on the list.
 - To avoid unlikely but potentially catastrophic events
- Address the risks from top to bottom on the list.

Risk	P(Loss)	Loss	Pri
Α	10%	10	
В	20%	5	
С	5%	25	
D	90%	1	
Е	40%	2	
F	99%	1	

26 Jul 2006 CSE403, Summer'06, Lecture 14

Valentin Razmov

Approaches to Coping with Risks

- n Avoid the risk
- n Transfer risk off the critical path
- Buy information
 - _n Bring in outside help
 - Prototype
- n Publicize risk
- Schedule to accommodate some risk
- Monitor risks as project progresses

26 Jul 2006

CSE403, Summer'06, Lecture 14

Valentin Razmov

Risk Management in Practice: Likelihood of Risks in Your Project

Choose (circle) the likelihood for each risk category:

Risk category	Risk likelihood		
Changing requirements	High / Med / Low		
Personnel issues (conflict, inexperience)	High / Med / Low		
"Feature creep"	High / Med / Low		
Is what you're building technically feasible?	High / Med / Low		
Is what you're building compelling to customers?	High / Med / Low		

26 Jul 2006

CSE403, Summer'06, Lecture 14

Valentin Razmov

Risk Management in Practice: In a Different Domain

- n Risk is sometimes modeled as a random variable.
- E.g.: Professors A, B, C, and D assign grades at random according to known distributions. Give your preference for the profs (1 highest, 4 lowest):
 - ⁿ Prof A: $P(4.0) = \frac{3}{4}$, $P(0.0) = \frac{1}{4}$
 - _n Prof B: $P(3.0) = \frac{1}{2}$, $P(2.0) = \frac{1}{2}$
 - _n Prof C: $P(4.0) = \frac{1}{4}$, $P(3.0) = \frac{1}{4}$, $P(1.7) = \frac{1}{2}$
 - $_{n}$ Prof D: P(2.4) = 1

26 Jul 2006

CSE403, Summer'06, Lecture 14

Valentin Razmo