Deliverables:
Beta Release
- **Installation package**
 - Application sources and binaries
 - One-step build for all sources
- **Latest specification & design documents**
 - Keep it short! Consider what is/isn’t important for customers / dev.
- **Release notes**
 - Detailed instructions on how to run a (small) demo of your app
 - Known issues with prioritization, expressed in a bug tracking system
- **Up-to-date test plan**
- **Automated tests (unit, acceptance, etc.)**
- **Up-to-date schedule**
 - Including what has been done and what remains to be done

Questions to consider: Who is your audience – customers or developers? What do they expect from this release? What defines success for them?

Deliverables (tentative list):
Final Release
- **Installation packages**
 - Including all of the items below
- **Application sources and binaries**
 - Separate distributions (installation packages) for customers and developers
 - One-step build – from compiling all sources to creating installation packages
- **User & technical documentation (separate)**
 - User doc: What does my mom need to know (and do) to run this product?
 - Technical doc: What does a support team need to know to work on version 2?
- **Release notes**
 - Known issues with associated severities & priorities
 - Add a link to your bug tracking system’s tasks/tickets that reflect those issues
 - Specify where your current code repository is
 - Instructions on running the installer and your app are moved to the user doc.
- **Latest test plan**
- **Automated tests (unit and acceptance)**
 - Test coverage would be a very welcome addition.
- **Up-to-date schedule**
 - Things that have been accomplished (of those that were planned)
 - Features (of those initially planned) that are now pushed to version 2 or abandoned
 - How much would each such feature cost (in terms of dev effort)?

Questions to consider: Who is your audience – customers or developers? What do they expect from this release? What defines success for them?

Outline
- The essence of risk and risk management
- Risk management themes: past and upcoming
- Risk exposure and prioritization
- Coping with risks
- Risk assessment in practice – exercises

Lecture 14:
Risk Management

"If Las Vegas sounds too tame for you, software might be just the right gamble."

Steve McConnell

Resources
- *Rapid Development*, by Steve McConnell
 - Ch. 5, 41;
 - Ch. 27 (optional)
- *Software Requirements*, by Karl Wiegers

Definitions of Risks
1. a condition that could cause loss or otherwise threaten the success of a project
2. a condition characterized by *lack of control*
Risk Management

- The goal
 - Successful project completion

- The job
 - Identify the risks
 - Address the risks with specific actions
 - Avoid or resolve the risks before they become real threats to the project

- Remember this:
 - Mistakes are made on every project. "I feel so much better since I gave up hope."
 - The goal is to get to successful project completion even though mistakes were and will be made.

Levels of Risk Management

- **Crisis management**
 - Address risks only after they have become problems

- **Fix on failure**
 - Address risks only after they have manifested

- **Risk mitigation**
 - Plan for when risks will show, but no attempt to prevent

- **Prevention**
 - Identify and prevent risks from becoming problems

- **Elimination of root causes**
 - Identify and eliminate factors that make risks possible

It’s ALL About Risk Management

- Themes we have discussed so far in the course:
 - Lifecycle models
 - Product proposal pitches
 - Requirements gathering techniques
 - Prototyping
 - Architectural design notations
 - Design principles
 - Usability design
 - Testing
 - Unit testing
 - Incremental releases
 - Project retrospectives
 - Team conversations

- What risk(s) does each of these practices help to manage / mitigate?

It’s ALL About Risk Management: Still to Come

- What are some important risk areas that we have not yet covered in the course?

The Multitude of Risks

- McConnell gives a list of 111 (!) schedule risks.
 - This does not even include risks beyond scheduling.

- How can one pay attention to all possible risks at once and proactively address them?
 - It’s a full-time job
 - Managers who are good at it are sought after and get paid very well.
 - Not all potential risks apply to all situations.
 - There are patterns; past experience or data on similar projects/teams can show what to pay extra attention to.
 - Not all risks that apply are equally important or likely.
 - Calls for risk prioritization

Risk Exposure

- **Exposure = P(Loss) * |Loss|**
 - E.g.: a 15% chance of slipping a project schedule by 10 weeks => a slippage time of 1.5 weeks is to be expected.
 - Allows a more intelligent estimate of the size of the “cushion” period you need for the project
 - Don’t take the estimation too far!
 - It’s not precise, after all.

Approaches to Coping with Risks

- Avoid the risk
- Transfer risk off the critical path
- Buy information
 - Bring in outside help
 - Prototype
- Publicize risk
- Schedule to accommodate some risk
- Monitor risks as project progresses

Risk Prioritization

- Compute the risk exposure for each risk.
- Sort all risks by their exposure: from high to low.
- Move large-loss risks up on the list.
 - To avoid unlikely but potentially catastrophic events
 - Address the risks from top to bottom on the list.

| Risk | P(Loss) | |Loss| | Pri |
|------|---------|----------------|------|
| A | 10% | 10 |
| B | 20% | 5 |
| C | 5% | 25 |
| D | 90% | 1 |
| E | 40% | 2 |
| F | 99% | 1 |

Risk Management in Practice: Likelihood of Risks in Your Project

Choose (circle) the likelihood for each risk category:

<table>
<thead>
<tr>
<th>Risk category</th>
<th>Risk likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changing requirements</td>
<td>High / Med / Low</td>
</tr>
<tr>
<td>Personnel issues (conflict, inexperience)</td>
<td>High / Med / Low</td>
</tr>
<tr>
<td>“Feature creep”</td>
<td>High / Med / Low</td>
</tr>
<tr>
<td>Is what you’re building technically feasible?</td>
<td>High / Med / Low</td>
</tr>
<tr>
<td>Is what you’re building compelling to customers?</td>
<td>High / Med / Low</td>
</tr>
</tbody>
</table>

Risk Management in Practice: In a Different Domain

- Risk is sometimes modeled as a random variable.
 - E.g.: Professors A, B, C, and D assign grades at random according to known distributions. Give your preference for the profs (1 highest, 4 lowest):
 - Prof A: \(P(4.0) = \frac{3}{4}, P(0.0) = \frac{1}{4} \)
 - Prof B: \(P(3.0) = \frac{1}{2}, P(2.0) = \frac{1}{2} \)
 - Prof C: \(P(4.0) = \frac{1}{4}, P(3.0) = \frac{1}{4}, P(1.7) = \frac{1}{2} \)
 - Prof D: \(P(2.4) = 1 \)