
1

Today we are going to talk about testing. Before you all lapse into comas in
anticipation of how exciting this lecture will be, let me say that testing actually
is kind of interesting. I can’t say that I’m an expert, but it seems (at least to a
person that wasn’t “brought up” in a culture of testing) that thinking about
testing and testability is a pretty interesting way to think about creating
software.

So let’s start at the beginning, shall we…

2

In the 7 minutes I spent thinking about it I came up with this list of aspects of
good software. I think that the items on this list are necessary, if not sufficient,
conditions for good systems. These aren’t the focus of this lecture, and I just
came up with them off the top of my head, but, I need an ego boost so let’s go
through them and you can pretend like I’m dispensing sage wisdom.

3

Example: Google maps – just look at all the mash-ups! This thing started of as
a way to get directions.

4

Example: Firefox allows for easy addition of functionality through plugins and
an API designed for extension.

5

I mean this in the absolute sense. The code should map inputs to outputs
within acceptable error bounds that are pre-specified.

6

If I enter Hamlet’s soliloquy into a text box asking for my after-tax income, my
hard-drive should not be formated.

7

Part of this is that the system responds when we ask it to do something, it
doesn’t periodically not do something when we ask for no particular reason.
This is a bit narrow. What we want is for the system to respond the same way
every time we ask it to do something. It needs to be predictable and
repeatable.

8

It should be very, very hard for me to use my cock-pit navigation tools to plot a
course though a mountain range. On a less tragic scale, clicking the close box
on an application shouldn’t allow a close before asking if I want to save my
work.

9

Review the slides on Usability for this one.

Ok, so why are we going through these in a lecture about testability? Well, at
least four (and you could argue five) of these are directly effected by our ability
to test them. What ones are they?

And now for the typical scare tactics: Software bugs do cause planes to fall (or
get taken) out of the sky. They cause patients to get overdoses and/or note
receive critical care. They cause space craft to miss entire planets. They
cause the loss of billions of dollars to the economy every year.

And besides, creating software is a craft and software that doesn’t at least
satisfy all these principles is poorly crafted. And if you don’t care about the
craft, you are in the wrong business.

So, testing is one way to approach the craft of designing and implementing
software.

10

The system fulfills the informal requirements – it solves the problem.

11

The system meets the (semi-)formal requirements.

Verification is really about strict, absolute adherence to a formal specification.
Validation is more about the fuzzier customer satisfaction.

12

Different kinds of tests have been conceptualized to address the verification-
validation spectrum.

Unit tests are meant to test each intended behavior of each module. However,
the granularity of the unit being tested can vary and unit test frameworks are
often useful for other kinds of testing. We’ll come back to this.

Integration testing is all about getting the units to hook up correctly. It’s less
about functionality and more about plumbing, though you often can’t tell
anything about the plumbing without a bit of functionality.

System testing is, in some sense, coarse-grained unit testing. It’s testing large
parts of the system, or the whole system, for functionality.

Regression testing is “testing for change” – you know, like “design for change”.
As you add functionality to your system and want to keep existing functionality
intact, you run a suite of tests after each modification so that you can see
when things break.

Acceptance testing is about validation. Does the end product solve the
problem it was intended to solve?

13

�/

So let’s look more deeply at verification.

When we do testing, what are we actually looking for? Some people break it
down into failures, faults, and errors.

Failures

Observable incorrect behavior of a program.

The program performs conceptually wrong. This does not refer
to code. Maybe the spec is wrong…

Faults

Related to the code. Necessary (not sufficient!) condition for the
occurrence of a failure.

Errors

Cause of a fault. Usually a human error (conceptual, typo, etc.)

Fault !=> Failure

Coincidental Correctness

So we are looking for failure and their causes.

14

A program is a function from the space of all possible inputs to the space of all
possible outputs.

A “Test Suite” is some subset of the inputs.

A “Test Case” is one particular input.

An “Ideal Test” is a test case where the correctness of the test implies the
correctness of the program.

So let’s just come up with ideal tests!

Do you think it easy to come up with ideal tests?

In general, it is impossible to define ideal test cases.

15

16

17

18

int sum(int a, int b) {return a + b;}

How long would it take to exhaustively test this program?

2^32 x 2^32 = 2^64 =~ 10^19 tests

Assume 1 test per nanosecond (10^9 tests/second) = we get
10^10 seconds…

About 600 years!

And this is one of the simpler programs you can think of…

When there is any complexity at all, it is often theoretically impossible to
exhaustively test.

Since we probably can’t come up with tests that guarantee correctness, we
settle for tests the improve our confidence.

19

Blackbox

Is based on a functional specification of the software

Depends on the specific notation used

Scales because we can use different techniques at different granularity
levels (unit, integration, system)

Cannot reveal errors depending on the specific coding of a given
functionality

Whitebox

Is based on the code; more precisely on coverage of the control or data
flow

Does not scale (mostly used at the unit or small subsystem level)

Cannot reveal errors due to missing paths (i.e., unimplemented parts of
the specification)

Test Criteria:

Whitebox: Cover execution paths

Blackbox: Cover input space

20

Equivalence partitioning

Identify independently-testable features

Defining all the inputs to the features

Identify representative classes of values

Which values of each input can be used to form test cases (categories,
boundary or exceptional values)

A (partial) model may help (e.g., a graph model)

Generate test case specifications

Suitably combining values for all inputs of the feature under test (subset
of the Cartesian product---cost, constraints)

Generate and instantiate test cases

21

22

23

24

25

After you’ve written your test, run it immediately. It should fail

The essence of science is falsifiability. Writing a test that works first time
proves nothing

Often, these are the simplest tests to write, and

they give you a good starting-point from which

to launch into more complex interactions

