Deliverables:
Zero-Feature Release

" Build process, installation process, code repository,
automated testing framework, bug tracking system
» Maybe no tests yet and no tickets in the bug tracking system
» Installation package
» Includes all of the items below
» Demo of one-step build and component communication
» Checks out all sources from repository, compiles and builds binaries,
packages them along with all existing documentation and automated
tests, and places the result on a known site ready for downloading
» Shows that your main components identified in the design can
successfully communicate (be integrated) with each other
» Latest specification, design, and test plan documents

» Keep them short! Consider what is / isn't important for customers / devs.

» Up-to-date schedule

» Includes what has been done and what remains to be done
» Release notes

» Detailed instructions on how to run the demo

» Known issues with prioritization

Questions to consider: Who is your audience — developers or end users?
What do they expect? What defines success for them?

Deliverables (tentative list):
Beta Release

» Installation package
» Application sources and binaries
» One-step build for all sources
» Latest spec & design documents
» Keep it short! Consider what is/isn’t important for customers/devs.
n Release notes
» Detailed instructions on how to run a (small) demo of your app
» Known issues with prioritization, expressed in a bug tracking system
n Up-to-date test plan
» Automated tests (unit and acceptance)
» Up-to-date schedule
» Including what has been done and what remains to be done

Questions to consider: Who is your audience —
customers or developers? What do they expect from this
release? What defines success for them?

Deliverables (tentative list):
Final Release

stallation packages
» Including all of the items below
» Application sources and binaries
» Separate distributions (installation packages) for customers and developers
» One-step build — from compiling all sources to creating installation packages
» User & technical documentation (separate)
. User doc: What does my mom need to know (and do) to run this product?
» Technical doc: What does a support team need to know to work on version 2?
» Release notes
» Known issues with associated severities & priorities
» Include a link to your bug tracking system'’s tasks/tickets that reflect those issues
» Specify where your current code repository is
»Instructions on running the installer and your app are moved to the user doc.
n Latest test plan
» Automated tests éunit and acceptance)
» Test coverage would be a very welcome addition.
» Up-to-date schedule
»Things that have been accomplished (of those that were planned)
. Features (of those initially planned) that are now pushed to version 2 or abandoned
» How much would each such feature cost (in terms of dev effort)?
Questions to consider: Who is your audience — customers or developers? What do
they expect from this release? What defines success for them?

Beware: Frequent Mistakes Made
by Students in Previous SE Classes

ommunication-related:

n Failing to submit (for the preliminary releases and
even for the final releaselg) key required
components

» Missing documentation, tests, etc.

n Not having a backup person who knows how to
put together deliverables and submit

n Submitting code without clear instructions about
how to run it if one starts from scratch

» Most customers aren't as tech-savvy as you are!

» Customers/users aren't intimately familiar with your
project and your way of doing things.
17 Jul 2006 CSE403, Summer'06, Lecture10

Lecture 10:

Core Principles and Best

Practices for Software Design
M (Part I1I)

“Treat design as a wicked, sloppy, heuristic
process. Don't settle for the first design that
occurs to you. Collaborate. Strive for simplicity.
Prototype when you need to. Iterate, iterate, and
iterate again. You'll be happy with your designs.”
-- Steve McConnell, Code Complete (277 ed.), Ch. 5

17 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

* Outline

n Time-tested software design principles

n

» More coming today, with examples...

17 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

i Resources

n "Code Complete”, 2" ed., by Steve McConnell
» Ch. 5: http://www.cc2e.com/docs/Chapter5-Design.pdf
n “The Pragmatic Programmer”, by Andrew Hunt
and David Thomas
» Ch. 2 (sections 7, 8, 9)
» Ch. 5 (sections 26, 28, 29)
n "Agile Software Development — Principles,
Patterns and Practices”; by Robert C. Martin
» See handout
n "Design Patterns Explained”, by Alan Shalloway
and James Trott

17 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

Principles for Good Design:
Interface Segregation Principle

n “Clients should not be forced to depend on
methods that they do not use.”

n Example: Dogs jump but don't sing. J

17 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

Principles for Good Design:

Dependency Inversion Principle
* (Example)

define TEMP_GAUGE 0x86 void Regulate(
#define FURNACE 0x87
#define ENGAGE 1
#define DISENGAGE 0

Thermometer t, Heater h,
double minTemp,
double maxTemp)

{
void Regulate(for(;;) {
double minTemp, double maxTemp) while (t.Read() > minTemp)
{ wait(1);
for(;;) { h.Engage();
while (read(TEMP_GAUGE)>minTemp) while (t.Read() < maxTemp)
wait(1); wait(1);
set(FURNACE, ENGAGE); h.Disengage();
while (read(TEMP_GAUGE)<maxTemp)
wait(1); }

set(FURNACE, ENGAGE);
}

} 17 Jul 2006

CSE403, Summer'06, Lecture10 Valentin Razmov

Principles for Good Design:
i Dependency Inversion Principle

n (A) “High-level modules should not depend on
low-level modules. Both should depend on
abstractions.”

n (B) “Abstractions should not depend on details.
Details should depend on abstractions.”

n Example: Separation of policy and mechanism

n Question: Is this principle an argument for
structuring systems using layers?

17 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

Principles for Good Design:
Liskov Substitution Principle

n “Subtypes must be substitutable for their base
types.”

n This is different from saying that there must
be an IS-A relationship between the two types.

» Example: Is Sguare always substitutable for
Rectangle?

17 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

Symptoms of Bad Designs:
Process Smells

Flawed or risky design processes:

n “Design by committee”

n Everyone on the committee puts in their favorite
features into the “soup.” What is the result?

n Moral: The design must be owned and managed
(and fended for) by someone.

n Not having several design options to choose
from

n Not iterating over designs
n Other examples?

17 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

Source: “Agile Software Development: Principles,

Patterns, and Practices”, by Robert Marti

Symptoms of Bad Designs:
Product Smells

esign product smells:

Rigidity — changes force other changes

Fragility — changes cause system to break in
unexpected ways

Immobility — can't extract and reuse subcomponents
Viscosity — hard to do the right thing, easy to do the
wrong thing

Needless complexity — excessive infrastructure with
no clear benefit

Needless repetition — repeating structures, but no
abstractions

Opacity — code is hard to read and understand

17 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

Additional Principles for
Building Software Systems

Make the common case fast and the uncommon

case correct.

n But do not spend time on optimizing code early on.

n “It [s easier to optimize correct code than to correct
optimized code.”-- Donald Knuth

n Among the three desirable aspects — consistency,
availability, and no network partitioning — you
can only have two.

n Fail early, gracefully, and transparently.

n Establish and maintain a clear audit trail.
» It requires little investment upfront but is invaluable
for debugging purposes.

17 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

