Lifecycle Architecture Review:
i Preliminary Feedback

13 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

Lecture 10:
Core Principles and Best
Practices for Software Design

M (Part II)

“Treat design as a wicked, sloppy, heuristic
process. Don't settle for the first design that
occurs to you. Collaborate. Strive for simplicity.
Prototype when you need to. Iterate, iterate, and
iterate again. You'll be happy with your designs.”
-- Steve McConnell, Code Complete (2@ ed.), Ch. 5

13 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

* Outline

n Time-tested software design principles
» With examples

13 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

i Resources

n 'Code Complete”, 2™ ed., by Steve McConnell
» Ch. 5: http://www.cc2e.com/docs/Chapter5-Design.pdf

n “The Pragmatic Programmer”, by Andrew Hunt
and David Thomas
» Ch. 2 (section 7), Ch. 5 (section 26)

n "Agile Software Development — Principles,
Patterns and Practices”, by Robert C. Martin
» See handout

n "Design Patterns Explained’, by Alan Shalloway
and James Trott

n '"On the Criteria to be Used in Decomposing
Systems into Modules”, by David Parnas

13 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

Best Practices for Software
* Design (discussed previously)

n Create at least three independent designs and choose
the best one among them.

n Keep it simple (a.k.a. KISS principle).

n Ask yourself how you may test your components.

n Do not invest too much into visualizing early designs —
they will change substantially.

n Learn to use design patterns.

n Consider if there are single points of failure or
bottlenecks in your designs.

n Use abstractions as much as possible.

n Encapsulate changing components;
fix the interfaces between them.

n Favor composition over inheritance.

13 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

Principles for Good Design:
Loose/Weak Coupling

n Avoid unnecessary dependencies between
modules.

n Law of Demeter: “"Any method of an object
should call only methods belonging to itself, to
any parameters that were passed in to the
method, to any objects it created, or to any
directly held component objects.”

» Example: What is wrong with the following code?

public void showBalance (BankAccount acct) {
Money amt = acct.getBalance();
printToScreen (amt.printFormat());

}

13 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov




Principles for Good Design:
Single Responsibility Principle

n Also, principle of strong cohesion
n “A class should have only one reason to change.”
» “God object” metaphor
n Example 1: Not storing state in a GUI class.
» Model-View-Controller (MVC) pattern helps to avoid this.
n Example 2: How is the principle violated below?

interface Modem {
public void dial (String pno);
public void hangup();
public void send (char c);
public char recv();

}

13 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

Principles for Good Design:
Open-Closed Principle

n “Software entities (classes, modules, functions,
etc.) should be open for extension but closed
for modification.”

n Example: Extending an abstract class (with as
many new subclasses as needed) rather than
modifying an existing class to accommodate
each new addition.

n The designer chooses what changes to
anticipate and what parts of the system to “fix”
(and assume that they won't change).

13 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov




