Lecture 10:

Core Principles and Best

Practices for Software Design
M (Part)

“Treat design as a wicked, sloppy, heuristic
process. Don't settle for the first design that
occurs to you. Collaborate. Strive for simplicity.
Prototype when you need to. Iterate, iterate, and
iterate again. You'll be happy with your designs.”
-- Steve McConnell, Code Complete (2@ ed.), Ch. 5

07 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

Outline

n Best practices for software system design

n Time-tested design principles
» With examples

07 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

i Resources

n "Code Complete”, 2™ ed., by Steve McConnell
» Ch. 5: http://www.cc2e.com/docs/Chapter5-Design.pdf

n "The Pragmatic Programmer’, by Andrew Hunt
and David Thomas
» Ch. 2 (section 7), Ch. 5 (section 26)

n "On the Criteria to be Used in Decomposing
Systems into Modules”, by David Parnas

n "Design Patterns Explained”, by Alan Shalloway
and James Trott

07 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

i Why Learn How to Design?

07 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

More Perspectives on How to
Approach Design

“There are two ways of constructing a software
design: one way is to make it so simple that there
are obviously no deficiencies; the other is to make
it so complicated that there are no obvious
deficiencies.”

-- C.A.R. Hoare (1985)

07 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

Best Practices for Software
Design (1/5)

n Create at least three independent designs
and choose the best one among them.

Software Features
Actually Used
7%

n Keep it simple (a.k.a.
KISS principle).

13%

n Scale down the
feature set to only the Always
parts that are strictly =~ 45% o e mes
necessary 16% |mRarely

B Never

Source: Standish report

19%
07 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

Best Practices for Software
Design (2/5)

n Ask yourself how you may test your components.
n Testability is correlated with good design quality.
» If you need to do extra work to test, something is likely
wrong.
» The culprit is usually tight coupling between modules.

n Do not invest too much into visualizing early
designs — they will change substantially.
» Write on index cards, rearranging and redrawing.
» Write on whiteboards; take camera snapshots.

» Avoid CAD tools and even UML-editing software — they
are heavyweight and discourage making changes, so
your design documents will quickly become obsolete.

07 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

Best Practices for Software
Design (3/5)

n Learn and use design patterns.
» Represent distilled knowledge about good designs
» MVC is one well-known example.
» Define a language to more effectively describe
designs (e.g., fagade, visitor, bridge, strategy, etc.)
n Source: Design Patterns Explained, Alan Shalloway

n Consider if there are single points of failure or
bottlenecks in your designs.
» Can those be avoided or compensated for?

07 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

Best Practices for Software
Design (4/5)

n Use abstractions as much as possible.
» Example (of what not to do):
class Square {
double lower_left_x_coord;
double lower_left_y_coord;
double lower_right_x_coord;
double lower_right_y_coord;

}
n Encapsulate changing components;
fix the interfaces between them.
» Why not allow interfaces to change in order to enable
the addition of new components later on (as needed)?!
~ Reference: On the Criteria to be Used in Decomposing

%‘Vstems into Modules, David Parnas
07 Jul 2001 CSE403, Summer'06, Lecture10 Valentin Razmov

Best Practices for Software
Design (5/5)

n Favor composition over inheritance.
» Example:

07 Jul 2006 CSE403, Summer'06, Lecture10 Valentin Razmov

