
CSE 403, Spring 2006, Alverson

Quality Assurance

Pragmatic Programmer Tip
Think about Your Work

Turn off the autopilot and take control.
Constantly critique and appraise your work.

CSE 403, Spring 2006, Alverson

Readings
Required:

“Rapid Development”, McConnell, Chapter 4,
Section 4.3 – QA Fundamentals
“Pragmatic Programmer”, Hunt and Thomas,
Chapter 8, p 237-247 – Ruthless Testing

Other good stuff:
“If you didn’t test it, it doesn’t work”, Coldwell
(link on class Resource list)

CSE 403, Spring 2006, Alverson

Outline
QA basics – getting off to a good start
Test
o What makes a good tester?
o What types of testing can we do?
o Can tools help?

Bugs!

Test material adapted from several talks by Ian
King, tester at Microsoft for many years.

CSE 403, Spring 2006, Alverson

What does QA mean to you?

Things we can do to ensure we produce a high
quality (low defect) product

Two main approaches to QA:
o Process: Build in quality from the start
o Test: Add quality through removing bugs

Your thoughts?

CSE 403, Spring 2006, Alverson

What are ways to foster quality from the
get go?

Over to you again – 3 ideas…

Some practices:
• Good design and planning
• Coding style guides
• Code reviews/walkthroughs
• Pair programming

CSE 403, Spring 2006, Alverson

CVSCVS

Tools can help!

Configuration Management
o Document changes, enforce good practices

Memory behavior
o Detects corruption and leaks

Performance
o Time of routines Gnu gprof

CSE 403, Spring 2006, Alverson

Interesting fact

Up to 4x the normal number of defects are reported for
released products that were developed under
excessive schedule pressure (Jones, 94) Why?

CSE 403, Spring 2006, Alverson

Test – the most common QA practice

Verify: “Did we build the system right?”Verify: “Did we build the system right?”

Validate: “Did we build the right system?

CSE 403, Spring 2006, Alverson

What makes a good tester?
Analytical
o Ask the right questions
o Develop experiments to get answers

Methodical
o Follow experimental procedures precisely
o Document observed behaviors, their precursors and

environment

Brutally honest
o You can’t argue with the data

CSE 403, Spring 2006, Alverson

How do test engineers fail?

Desire to “make it work”
o Impartial judge, not “handyman”

Trust in opinion or expertise
o Trust no one – the truth (data) is in there

Failure to follow defined test procedure
o How did we get here?

Failure to document the data
Failure to believe the data

CSE 403, Spring 2006, Alverson

What types of testing can we do?

Functional (include boundaries)
Performance
Security
Stress
Resource exhaustion, errors, and recovery
Reliability/availability
Usability (is it obvious)

Back to you to generate some ideas!

CSE 403, Spring 2006, Alverson

Some testing jargon

Black box testing
Treats the system as atomic

Best simulates the customer experience

White box testing
Examines the system internals

Trace data flow directly (ie, in the debugger
Bug report contains more detail on source of defect

May obscure timing problems (race conditions)

CSE 403, Spring 2006, Alverson

• In black box, the tests
are usually intended
to cover the space of
behavior

• In white box, the tests
are usually intended
to cover the space of
parts of the program

It’s black and white, right?!

Often tester
driven

Often
developer
driven

CSE 403, Spring 2006, Alverson

How do we design good tests?
Well-defined inputs and outputs
o Consider environment as inputs
o Consider ‘side effects’ as outputs

Clearly defined initial conditions
Clearly described expected behavior

Specific – small granularity provides greater
precision in analysis

Test must be at least as verifiable as feature

CSE 403, Spring 2006, Alverson

… and good test cases?

• Valid cases - What should work?
• Invalid cases – What shouldn’t?
• Boundary conditions
• Error situations – ie, resource exhaustion

CSE 403, Spring 2006, Alverson

What’s the trick to running tests?
Manual Runs

Tests that require direct human intervention with the
system

Necessary when:
o GUI is present
o Behavior is dependent on physical activity

Advisable when:
o Automation is more complex system being

tested!
o System is changing rapidly (early development)

CSE 403, Spring 2006, Alverson

Automated Testing

Tests that can be executed
independent of human interaction

Good: replaces manual testing

Better: performs tests difficult for manual testing
(e.g. timing related issues)

Best: enables other types of testing (regression,
perf, stress, lifetime)

Cost: Time investment to link tests into harness

CSE 403, Spring 2006, Alverson

Tools rock!
Example – Test Harness

Tests are programmed as modules, then run by
harness
Harness provides control and reporting

Example – Code Coverage

Freescale™
CodeTEST®
Software Analysis
Tools

CSE 403, Spring 2006, Alverson

Pragmatic Programmer Tips

Test early, test often, test automatically

Coding ain’t done ‘til all the tests run

Find bugs once

CSE 403, Spring 2006, Alverson

BUGS!
Managing Bugs

CSE 403, Spring 2006, Alverson

What is a bug?

Formally, a “software defect”
System fails to perform to spec
System causes something else to fail
System functions, but does not satisfy usability
criteria

If the system works to spec and someone
wants it changed, that’s a feature request

CSE 403, Spring 2006, Alverson

What makes a good bug report?

Include:
Reproducible steps – how did you cause the failure?
Observed result – what did it do?
Expected result – what should it have done?
Any collateral information: return values/output,…
Environment
o OS version , env variables, compiler flags, …
o Test platforms must be reproducible
o “It doesn’t do it on my machine”

CSE 403, Spring 2006, Alverson

Generally have a form to help

CSE 403, Spring 2006, Alverson

And a database to file it in
Why is a bug db useful?

• Don’t lose bugs
• Can pass them around easily
• Justify resources
• Justify your work
• Help indicate when the product ready for release

• Based on the number and type of bugs
• Based on a graph of the rate of bugs occurring

• Enables all sorts of cool metrics that management (and
customers!) likes!

CSE 403, Spring 2006, Alverson

0

5

10

15

20

25

30

SPR rate
Open
Closed
Backlog

TIME

CSE 403, Spring 2006, Alverson

Classifying bugs

Cray links severity with priority. Some keep it
separate.

CSE 403, Spring 2006, Alverson

Another classification
Severity

o Sev 1: crash, hang, data
loss

o Sev 2: blocks feature, no
workaround

o Sev 3: blocks feature,
workaround available

o Sev 4: trivial (e.g.
cosmetic)

Priority
o Pri 1: Fix immediately
o Pri 2: Fix before next

release outside team
o Pri 3: Fix before ship
o Pri 4: Fix if nothing better to

do ☺

CSE 403, Spring 2006, Alverson

A Bug’s Life (idealistic)

CSE 403, Spring 2006, Alverson

Regression Testing
1. Ensure that the bug you just fixed, doesn’t

reappear later though other mods

o Add a test case to your suite for it!

2. Ensure that the fix you just added doesn’t break
things working previously

o Rerun the test suite before checkin

CSE 403, Spring 2006, Alverson

When can I ship?

Tune in on Monday!

