Software Development Lifecycle

The Power of Process

Readings

- "Rapid Development", Steve McConnell
 - Chapters 7, 10, 21, 25, 35, 36
- "Anchoring the Software Process", Barry Boehm
 - Pages 1-10 in particular

Outline

- What is a software development lifecycle?
- Why do we need a lifecycle process?
- Lifecycle models and their tradeoffs
 - "Code-and-fix"
 - o Waterfall
 - o Spiral
 - Evolutionary prototyping
 - Staged delivery
- Main recurring themes

What do we mean by a lifecycle?

Over to you ... what do you think?

• The main function of a lifecycle model is to establish order in which project events occur from project conception to project end-of-life

- Typical events include
 - Specification, design, implementation, test, release
 - But they usually don't happen in nice clean little stages like this
 - So we develop various models to try to maintain the benefits and still be realistic

Are there analogies outside of SE?

• Consider the process of building the Paul Allen Center

Is a lifecycle process really necessary?

I say "yes", what about you? Why?

- It provides us with a structure in which to work
- It forces us to think of the "big picture" and follow steps so that we reach it without glaring deficiencies
- Without it you may make decisions that are individually on target but collectively misdirected
- It is a management tool, but not only for managers!

Do all projects need to follow a lifecycle process?

Project with little attention on process

Survival Guide: McConnell

Project with early attention on process

Onto the models...

These are fairly well known and used:

- "Code-and-fix"
- Waterfall
- o Spiral
- Evolutionary prototyping
- Staged delivery

But there are many others (design-to-schedule, evolutionary delivery, variations on the above...)!

"Code-and-fix" Model

"Code-and-fix" Model

Advantages

- Little or no overhead just dive in and develop, and see progress quickly
- Applicable *sometimes* for very small projects and shortlived prototypes

But

- Dangerous for most projects Why?
 - No way to assess progress, quality or risks
 - Unlikely to accommodate changes without a major design overhaul
 - Unclear delivery features (scope), timing, and support

Classic Waterfall Model

OUL TOU, Oping 2000, ANOISON

Classic Waterfall Advantages

- Can work well for projects very well understood but complex
 - Tackles all planning upfront
 - The ideal of no midstream changes equates to an efficient software development process
- Can provide support for an inexperienced team
 - Orderly sequential model that is easy to follow
 - Reviews at each stage determine if the product is ready to advance

Classic Waterfall Limitations

Your turn ...

- Difficult to specify all reqs of a stage completely and correctly upfront
 - completely \rightarrow lots and lots of detail
 - correctly \rightarrow every single detail is correct
- No sense of progress until the very end
 - "so far so good"
 - Nothing to show to anxious customers ("we're 90% done")
- Integration occurs at the very end
 - Definite setup for failure -integrate early and often is the rule in practice
 - Solutions are inflexible, no allowance for feedback of into discovered later
 - Inasmuch, what is delivered may not match customer real needs
- Phase reviews are massive affairs
 - It takes a lot of inertia (\$\$) to make any change given the material behind the current path

Spiral Model – Risk Oriented

Spiral Model

- Oriented towards phased reduction of risk
- Take on the big risks early and make some decisions
 - are we building the right product?
 - do we have any customers for this product?
 - is it possible to implement the product with the technology that exists today? tomorrow?
- Walks carefully to a result (tasks can be more clear each spiral)

Can you think of a project that could benefit from this model?

Spiral Model

Advantages

- Especially appropriate at the beginning of the project when the requirements are still fluid
- Provides early indication of unforeseen problems
 - Checkpoints at the end of each spiral, based on greatest risks
- As costs increase, risks decrease!
 - Always addresses the biggest risk first

Limitations

• Requires a level of planning and management (cost)