Features Specification

The features of Get-a-Life​ can be separated into two general categories: those needed from the user’s perspective and those from the point of view of administration. The following is a list of specifications for the program.

User Interface:

· Register & sign-in:

· sign-in – box in homepage with username/password

· register – fill in basic information (e.g. email) in separate page

· forget password

· Schedule:

· one-time event –

1. user may add onetime events to his everyday schedule by selecting a time block during the day. A dialog box will appear in which the user can input the event description.

2. events are modifiable by double-clicking the colored block for dialog box to appear.

· everyday schedule – user can input a repetitive daily/weekly schedule that include static activities such as school and work. This schedule may be modified.

· the schedule does not display event specifics upfront; colored time blocks are used to signify whether or not a particular time frame is occupied. The user can view event descriptions by moving the cursor to the scheduled time-block.

· Interest list:

· This will be a list of the user’s interests (selected from categories listed by the system). The user can see the list of events related to the selected interest.

· The user can modify his interests in the following ways:

1. add – This is a button that adds a category from the pre-selected event categories to the user’s interest list.

2. delete – This will be a button that removes the selected interest (by clicking on the interest once) from the user’s interest list.

· Friend list:

· User may view the schedules of everyone on his friend list. This read-only schedule gives information only on when the friend is free during times of day. It excludes the ‘cursor-hover’ option – that enables the user to see the exact event that the friend is busy with – like in the user’s own schedule.

· By clicking on the ‘friend list’ tab, a list of friend names will appear, along with options to add a new friend (ask for his permission), view friend requests, and to delete an entry.

· The schedule of a friend appears with a click on the friend name.

1. initially only the selected friend’s schedule is displayed

2. drag-down menu allows user to view multiple people’s schedule overlapped by selecting another name (including user’s own schedule)

· Friend requests – add new/requests from others

1. after clicking ‘add new’, user can request to add another user to his friend list (read-only access to schedule)

2. a list of requests from others are shown that the user can allow/deny

· event proposal

1. an event – either selected from the database, or typed in by the user – may be proposed to other users (only usernames are required, thus these users are not necessarily people on the friend list) as something that these people can do as a group.

2. list of proposals from others is shown that the user can accept/reject

· Events:

· When clicked once, the user can find events in two ways: by popular categories or by specifically searching for keywords, time or location.

· There will be a link to a list of the popular event categories. Each category links to a list of events related to the clicked category.

· The user can also “suggest” (search) events by

1. keywords

2. advanced search, where the user specifies the time/date or location

· Furthermore, the events can be sorted by

1. time – where the events at the most recent time are at the top of the list

2. category – the events are sorted alphabetically by their related category

3. user rating – events with higher ratings are at the top of the list

· Forum: comments/suggestions from the user

· Rate users: system similar to eBay (start at 0, in/decrement per event per user)

Server Specifications:

The server provides these services:

· Deleting a user/event from the database.

· Keeping track of any relevant performance statistics

· Reliability important, but we will allow for weekly downtime if necessary maintenance

Software Architecture

From the user’s perspective, there are only a few major components to the system. The user interacts with the program through a User Manager, which has Schedule Manager, Profile Manager, and Friends Manager components associated with it. These provide the functionality for different parts of the system. The Event Suggestion and User Rating pieces interact with the Schedule Manager and Profile Manager to provide additional functions.
Figure 1: general architecture – user’s perspective

[image: image4.png]Friends

User1ID
User2ID

Event AUses
D

D o B

A User_Event s

StartTime UserD [~ Lastame
EndTime [+ EventlD Uity
Location o
Description Rating
Event_Interest Interest User_Interest
EventlD D UserD
InterestlD »| Name InterestlD

The user interacts with the program through the user interface. A User Manager makes use of a Schedule Manager, Profile Manager, and Friends Manager to divide functionality into different portions. The Schedule Manager interacts with a Schedule to access individual Events, which are mapped from the database through an Event DAO (Data Access Object). In addition to basic user information, the User Profile is primarily a list of friends and a list of interests. These are mapped to objects from the database using DAOs as well.

To implement our architecture, we will be using the Spring Web Framework (http://www.springframework.org/). It will ensure that our program is structured according to an MVC architecture. It also provides invaluable support for developing a web application, such as JDBC support and error reporting.

Figure 2: software architecture in detail

[image: image2]
Figure 3: database schema

[image: image3]
Team Structure
· Project Manager - Zinnia

· Ensures project is on track in meeting deadlines and milestones

· Reviews and combines documentation generated by each team

· Helps each team during the development process as needed
· Database Developer – Laurence, Ryan

· Creating and managing the database
· Data access classes
· Queries
· Model Developer - Chester

· Develops algorithms for site features
· Layer between database and GUI
· GUI Developer – Brittany, Jessan

· In charge of creating the user interface (i.e. the website.)
· Responsible for creating graphics and making site aesthetically pleasing
· Tester - Bruce

· Develops tests to ensure the website conforms to the use cases

· Reviews developer’s unit tests

Milestones

April ~

24th: First draft of interface completed

May ~

1st: Interaction between model and GUI initiated. Integration testing begins.

9th: BETA – User registration, event search,

15th: Look for user input (friends, family, people with free time in labs)

29th: Total code freeze

30th: Demo and documentation completed

Tasks

Test

	Completion Date
	Task

	As needed
	Develop/write Unit Tests

	As needed
	System Functionality Test Plans

	Daily
	Perform build tests (with Smoke test)

	April 24
	Establish automated build system

	April 24
	Establish defect database system

	May 1
	Begin Integration testing

	May 5
	Code Review (Beta Release)

	May 5
	System Verification Test Plan (Beta)

	May 10
	System Verification Testing (Beta)

	May 15
	Begin usability testing

	May 24
	Code Review (Final Release)

	May 24
	System Verification Test Plan (Final Release)

	May 29
	Final system verification test

	May 30
	Final Design Specification Document/Lessons learned

	May 30
	Help Guide, Release Notes, License Agreement

Documentation

	Completion Date
	Task

	As needed
	Keep up living documents: interfaces, spec, task list, meeting notes

	Daily
	Perform build tests (with Smoke test)

	April 24
	Establish automated build system

	April 24
	Establish defect database system

	May 1
	Begin Integration testing

	May 7
	Version one of Help guide, release notes

	May 22
	FAQ doc based on user testing – draft 1

	May 24
	Begin final version of all documents

	May 30
	Final Design Specification Document/Lessons learned

	May 30
	Help Guide, Release Notes, License Agreement

Database Development

	Completion Date
	Task

	April 24
	User, Event, Interest DAOs.

	April 28
	Schedule DAO, Friendlist, Interestlist

	May 3
	DatabaseFacade

Model Development

	Completion Date
	Task

	April 24
	Development environment set up (Eclipse and CVS?)

	April 24
	Deploying application to web server

	April 31
	Basic registration, schedule, profile, event search

	May 7
	friends list initiated, schedule views

	May 14
	User rating and friend requests implemented

	May 21
	Privacy and event proposal implemented:

	May 29
	Code freeze

	May 30
	Final release and demo complete

GUI Development

	Completion Date
	Task

	April 24
	First draft site map (page by page content and link structure)

	April 28
	Revised of interface based on site map

	May 1
	Have interaction between GUI and model using velocity

	May 7th
	Prepare a high quality draft of interface.

	May 17
	Have a list of final changes needed.

	May 26
	GUI Freeze to be able to finish end user documentation

Risk Assessment

	Risk
	Probability of occurring
	Impact if it occurs
	Mitigation plan

	Recurring events
	10%
	1/10
	Post each occurrence separately.

	Private events and schedules
	70%
	7/10
	Private events added as time allows. Private schedule handled through Friends List

	Database performance
	90%
	9/10
	Use pooling to handle multiple connections

	Feedback and event posting
	20%
	4/10
	e-Bay style feedback with weight assigned to each user

	Security
	50%
	9/10
	Login user name and password, Java, and consult instructors

1. Recurring events

· Risk –

There is a concern that adding recurring events to the site might not be feasible. It is unclear how we can program the site to recognize events that happen more than once when dealing with searches or populating a user’s event calendar. Should the database be updated every day to include an event that is recurring on that day? Or should the database automatically be populated with all instances of a recurring event during a set time period?
· Mitigation Plan –

We have decided to forgo recurring events until we can develop an automated solution. Recurring events are an “extra” feature and not really necessary to realize the essential parts of the project. Recurring events can currently be added by adding each occurrence of the event separately. Automation is an “extra” feature we can research and add as time allows.
2. Private events and schedules
· Risk –

An essential feature of our project is the ability to make public and private events and schedules. Private events and schedules will only be viewable by users on an approved list. The amount of data required to keep track of who can view what event and schedule is a concern. It is possible the search time to retrieve this information may be unacceptable.

· Mitigation Plan –

The addition of private events has been deemed to be a superfluous feature and will only be added if the essential parts of the project are completed on time. As an alternative we may have friends-only events. The Friends List is an essential feature of the project, so private schedules will be handled through that.

3. Database performance

· Risk –

In a wide scale commercial application of this project, the database would be bombarded with multiple simultaneous requests for data. The database must be able to handle multiple connections without excessive delays.

· Mitigation Plan –

Pooling will be implemented to handle multiple database accesses.
4. Feedback system and event posting

· Risk –

Site may be used to post to post bogus events or ruin another user’s credibility.

· Mitigation Plan –

The site will use a rating system similar to e-Bay that will allow users to post feedback regarding an event. Negative feedback will warn users that the event sponsor has a shady history. In the event that negative feedback continues with regard to a specific event sponsor, the event sponsor will not be able to post future events.
The flipside of this problem is that a user (or group of users) may attempt to ruin the credibility of an event sponsor. In the event this becomes a problem, we can implement a weighted rating system. The amount of time a user has been registered with the site as well as the number and type of feedback postings will determine how much their feedback will affect a sponsor’s feedback rating. Users that are newly registered and/or have a history of leaving nothing but negative feedback will not have as much of an impact on a feedback rating as someone who has been using the site for an extended period of time and has left more objective feedback.
5. Security
· Risk –

Keeping each user’s data safe is a major concern. No one in the group has much experience with logins, cookies, page sessions, and transactions. Will we be able to keep everyone’s data safe?
· Mitigation Plan –

As with any site, there is a risk of some unknown vulnerability being exploited maliciously. The use of user names and passwords and Java should keep most of the inner workings of our site hidden and prevent unauthorized access. We can also consult with the instructors as needed to make the site more secure.

Test and Documentation Plan

Test

· Overview –
Testing will ensure the correctness, security, and quality of our product. Testing will be performed through the coding cycles as unit tests and also will have a designated phase in the software lifecycle. Each major component will be tested separately upon each feature integration, and the entire system will be tested before each major milestone and integration phase (Beta and Release). Defect and feature tracking will be done through the Bugzilla management software.

· Detailed plan –
· Unit Test

As another feature is added to a particular component, unit tests will be written to ensure the validity of the new feature. Unit tests will be written for all the methods and classes that have interaction in the new feature. In particular, the JUnit framework will be used for unit testing. The @Test, assertions, and test fixture constructs will be executed in the JUnit TextRunner console. Furthermore, JUnit tests will be written for anticipated exceptions and correction exception handling will be verified. Finally, the successful execution of all the unit tests will be integrated into the nightly build system after initial integration is achieved. Thus, unsuccessful execution of unit tests will result in a build failure. A build will only be considered successful after a smoke-test, which will be a brief end-to-end test to ensure successful integration.

Tests will be written for each newly discovered bug. This will ensure that new fixes and features do not have undesired effects on existing code and also isolate potentially recurring software defects.

· System Test

Systems verification testing will occur at each milestone and prior to each deployment (Beta, Release will be more thorough) to ensure overall integration of the product. The test plan will isolate individual components in the product as well as satisfy use cases. Note that a general use case, such as log in, view/modify events/schedule, search events, and log out will suffice for the smoke test. The test plan will be drawn from the specification document to ensure that the product successfully encompasses all the features of each component along with component integration. During system test, the database will be populated with arbitrary data to represent the product in a state with active users. This will be achieved by writing a database loading script in MySQL. Sample use case testing to verify end-to-end feature functionality include but are not limited to: adding to the friend list, proposing an event to the friend list, rating users based on events, event searching, editing schedule, adding interest, and posting new event. See Appendix for the details of these use cases.

· Backend

The scope of component testing will not extend beyond the functionality of third party software. Rather, the guaranteed expectations of our reliance will be ensured. In particular, the backend will consist of a MySQL database server and an Apache Tomcat web server. The ACID properties of our transactions will be tested through concurrency and fail-over test cases, such as multiple log-ins and sudden power outage. Furthermore, stress-tests will be run to ensure scalability of our product, which will be performed with the Apache JMeter application. For example the backend servers will experience load while multiple users attempt to use the product and/or the web server makes a large number of database requests. JMeter will allow load simulation along with resource usage analysis for dynamic testing. Note that an automated load generating utility will be used to ensure prolonged load.

· Front-end

GUI-level testing will ensure the integration of features. End-to-end testing will evaluate the validity of each product feature. Test cases will be derived from the documented functionality of features. Front-end testing will be executed manually due to the overhead of using automated GUI capture utilities. Furthermore, a live tester will ensure visual features of the product, such as the location of buttons, size of font, color schemes, frame sizes, etc.

· Future Releases

Minor, non-show stopping defects will be permitted to exist in the final release pending management evaluation, which will carry on as defects in the next release. Furthermore, usability will be considered through the systems verification testing and will be evaluated in the post-release period as points of future improvements. Usability studies will be conducted after the initial release as a sequence of focus groups to obtain field input.

Documentation
· Overview –
Documentation serves as a supplement to our software and overall management. Documentation will be delivered for the administrative guides, user guide or help pages, release notes, end user license agreement, and lessons-learned.

· Detailed plan –
· Administrative Guides

Several administrative guides such as architecture and design documents will be delivered during the life cycle of the product. The design document will be divided into components such as the backend and front-end, and further described as feature sets. Component descriptions in the design document will be written by the developers who work on that particular component, and the entire document will be overseen and reviewed by the chief architects to ensure correctness. Changes to components will also be tracked in this document. The configuration guide will detail the software and hardware systems that support the deployment. This document will describe the current configuration for duplication, maintenance, and scalability. These documents will be for internal use and will provide details into the specific implementation of the product, which can further be used for administration and/or developers of future releases of the product.

· User Guide/Help Pages

The user guide or help section will be a link enabled in the website, accessible from every page and thus be delivered as part of the product release. This documentation will describe feature usage and product limitations. For example, the help pages will address specific web browser support. A frequently asked questions (FAQ) section will address common user issues. The help documentation will be highly structured as sequential user interaction and will follow the general user control flow. Furthermore, this help section will be continually updated to address user concerns. A user questions/comments form can be submitted through this section to address personal issues.

· Release Notes

The release notes document will be a README for the current release and thus be delivered with the product release. This document will briefly describe the current release revision along with known defects, and may be updated as new defects are discovered and/or update deployed after release.

· End User License Agreement (EULA)

The End User License Agreement will be a link enabled from the website, accessible from every page and thus be delivered as part of the product release. This document will identify all legal responsibilities and disclaimers regarding the product, company, and user.

· Lessons-learned

The lessons-learned document will serve as a conclusion for the release and thus be delivered after the product release. The group can effectively use the team Wiki page to track progress. This document will evaluate the success of design decisions, administrative decisions, and recommendations for future releases.

Uses

Has

Has

Has

Uses

Uses

User Rating

Event Suggestion

Friends Manager

Profile Manager

Schedule Manager

User Manager

User Interface

Uses

Uses

Uses

Uses

Interest DAO

Uses

Interest

Uses

Uses

Has

Schedule

Friends List

Event

User Profile

Uses

Has

Has

Has

Event DAO

User Profile DAO

Friends DAO

User Interface

Database

User Rating

Event Suggestion

Friends Manager

Profile Manager

Schedule Manager

User Manager

User

Uses

Has

Uses

Has

Uses

Uses

Uses

Uses

Uses

Uses

Uses

Uses

Controls

[image: image1]