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Readings and References

» References
» Software Architecture, David Garlan, CMU, 2001
 http://www-2.cs.cmu.edu/~abl e/publi cations/ency cSE2001/

» A Practical Method for Documenting Software
Architectures, Clements, et al, CMU, 2002
e http://www-2.cs.cmu.edu/~abl e/publications/icse03-dsa/
» Enterprise JavaBeans Specification, Sun Java Community
Process
e http://java.sun.com/products/ejb/docs.html
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Software Architecture

» The software architecture of a program or
computing system is the structure or structures
of the system, which comprise

» software components
» the externally visible properties of those components
» and the relationships among them.

From Software Architecture in Practice, Bass, Clements, Kazman, referenced in Garlan
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View

» The architecture of a system describes its gross
structure using one or more views
o Structurein aview illuminates a set of top-
level design decisions
» how the system is composed of interacting parts
» Where are the main pathways of interaction
» key properties of the parts

» sufficient information to allow high-level analysis
and critical appraisal
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Uses of an Architectural Description

» Understanding
» Abstraction means that we can grasp the major
elementsin aview and the rational e behind them
* Reuse
» Reusable chunks must be visible to be recognized,
extracted, generalized and reapplied to new areas
 Construction

» Some views provide a partial blueprint for
development - components and dependencies
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More Uses of an Architectural Description

» Evolution
» Expose the “load-bearing walls’ of the design and
distinguish between components and connectors
o Analysis
» Consistency, performance, conformance
¢ Management
» Milestone: successful analysis of valid architecture
e Communication
» Stakeholders can prioritize explicit tradeoffs
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How to describe an architecture?

* “Boxesand lines’ | o @

» graphical, adapteble, intuitive (. <
» traditional architecture description ‘\\ @ﬁ)

» Some issues
» meaning of the graphical symbolsvaries
» inconsistent or incomplete information

» difficult to formally analyze for consistency,
completeness, correctness

» constraints are hard to show, enforce
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Architectural Description Languages

» Formal notations for representing and analyzing
architectural descriptions
» Provide a conceptua framework and concrete
syntax for characterizing software architectures
» aso provide tools for parsing, displaying, compiling,
analyzing, or simulating the architectural description
 Detailsof the ADL vary widely depending on
the intended application domain
» Like metrics - useful but judgement required for use
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Multiple views

» A key understanding is that multiple views of
the architecture are valid

» different stakeholders need to see different things

» different aspects of the system are best viewed
from different points of view

» Code-oriented views
» modular structure of the system, layers
» Execution-oriented views
» dynamic configurations, performance, reliability
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Entities in an execution-oriented view

System and Software Components

» hardware, programs, data blocks
Connectors

» mediate interactions among components
Configurations

» combinations of components and connectors
Constraints

» resource limitations, operating environment
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Enterprise Java Bean Examples

» Thisisthe specification of the Enterprise JavaBeans
architecture.

» The Enterprise JavaBeans architecture is a component
architecture for the development and deployment of
component-based distributed business applications.

» Applications written using the Enterprise JavaBeans
architecture are scalable, transactional, and multi-user
secure.

» These applications may be written once, and then
deployed on any server platform that supports the
Enterprise JavaBeans specification.

Chap 3: Roles and Scenarios
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 Discusses the responsibilities of
» Enterprise Bean Provider (Aardvark, Wombat)
» Application Assembler (Wombat)
» Deployer (IT Staff)
» EJB Container and Server Providers (Acme)
» System Administrator (IT Staff)

 with respect to the Enterprise JavaBeans
architecture.
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Module view of deployed application

T

HR module

ﬁ Payroll module

Employee
Record

6.2.2 What a container provides

The following diagram illustrates the view that a container provides to clients of session beans that pro-
wvide local and/or remote client views. Note that a client may be a local client of some session beans and
a remote client of others

Client View of session beans deployed in a Container

container
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Figure 21 Example of Inheritance Relationships Between EJB Classes
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A session object does not exist until it is created. When a client creates a session object, the client has a
reference to the newly created session object’s component interface.




Object Interaction
Diagram

Figure § OID for session object at start of a mansaction.
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Data Flow Diagrams (DFD)

» DFDs document a process by documenting the
flow of data throughout the process.

» sguare external data source or sink
» arrow data flow
» circle process input data to output data
» paralel lines data store

system user i

S

1D confirmation m
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Why do boxes and lines persist?

Boxes and Lines are generally understandable and adaptable

. Negotiate to
Change A’s  Publish 1 o55rm find common
form to  abstraction ;4o gy form for A& B

B’s form of A’s for
0 B
N

B
o) 07 '®
Attach adaptor Introduce Provide B with @
or wrapper to A intermediate import/export Make B
form convertor multilingual

9 | Maintain parallel consistent versions

Figure 4: Some mismatch repair techniques, from Garlan, Software Architecture
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