Architecture

CSE 403, Winter 2005
Software Engineering

http://www.cs.washi ngton.edu/educati on/courses/403/05wi/

31-Jan-2005 cse403-08-architecture © 2005 University of Washington 1

Readings and References

» References
» Software Architecture, David Garlan, CMU, 2001
 http://www-2.cs.cmu.edu/~abl e/publi cations/ency cSE2001/

» A Practical Method for Documenting Software
Architectures, Clements, et al, CMU, 2002
e http://www-2.cs.cmu.edu/~abl e/publications/icse03-dsa/
» Enterprise JavaBeans Specification, Sun Java Community
Process
e http://java.sun.com/products/ejb/docs.html

31-Jan-2005 cse403-08-architecture © 2005 University of Washington 2

Software Architecture

» The software architecture of a program or
computing system is the structure or structures
of the system, which comprise

» software components
» the externally visible properties of those components
» and the relationships among them.

From Software Architecture in Practice, Bass, Clements, Kazman, referenced in Garlan

31-Jan-2005 cse403-08-architecture © 2005 University of Washington 3

View

» The architecture of a system describes its gross
structure using one or more views
o Structurein aview illuminates a set of top-
level design decisions
» how the system is composed of interacting parts
» Where are the main pathways of interaction
» key properties of the parts

» sufficient information to allow high-level analysis
and critical appraisal

31-Jan-2005 cse403-08-architecture © 2005 University of Washington 4

Uses of an Architectural Description

» Understanding
» Abstraction means that we can grasp the major
elementsin aview and the rational e behind them
* Reuse
» Reusable chunks must be visible to be recognized,
extracted, generalized and reapplied to new areas
 Construction

» Some views provide a partial blueprint for
development - components and dependencies

31-Jan-2005 cse403-08-architecture © 2005 University of Washington 5

More Uses of an Architectural Description

» Evolution
» Expose the “load-bearing walls’ of the design and
distinguish between components and connectors
o Analysis
» Consistency, performance, conformance
¢ Management
» Milestone: successful analysis of valid architecture
e Communication
» Stakeholders can prioritize explicit tradeoffs

31-Jan-2005 cse403-08-architecture © 2005 University of Washington 6

How to describe an architecture?

* “Boxesand lines’ | o @

» graphical, adapteble, intuitive (. <
» traditional architecture description ‘\\ @ﬁ)

» Some issues
» meaning of the graphical symbolsvaries
» inconsistent or incomplete information

» difficult to formally analyze for consistency,
completeness, correctness

» constraints are hard to show, enforce

31-Jan-2005 cse403-08-architecture © 2005 University of Washington

Architectural Description Languages

» Formal notations for representing and analyzing
architectural descriptions
» Provide a conceptua framework and concrete
syntax for characterizing software architectures
» aso provide tools for parsing, displaying, compiling,
analyzing, or simulating the architectural description
 Detailsof the ADL vary widely depending on
the intended application domain
» Like metrics - useful but judgement required for use

31-Jan-2005 cse403-08-architecture © 2005 University of Washington 8

Multiple views

» A key understanding is that multiple views of
the architecture are valid

» different stakeholders need to see different things

» different aspects of the system are best viewed
from different points of view

» Code-oriented views
» modular structure of the system, layers
» Execution-oriented views
» dynamic configurations, performance, reliability

31-Jan-2005 cse403-08-architecture © 2005 University of Washington 9

Entities in an execution-oriented view

System and Software Components

» hardware, programs, data blocks
Connectors

» mediate interactions among components
Configurations

» combinations of components and connectors
Constraints

» resource limitations, operating environment

31-Jan-2005 cse403-08-architecture © 2005 University of Washington 10

Enterprise Java Bean Examples

» Thisisthe specification of the Enterprise JavaBeans
architecture.

» The Enterprise JavaBeans architecture is a component
architecture for the development and deployment of
component-based distributed business applications.

» Applications written using the Enterprise JavaBeans
architecture are scalable, transactional, and multi-user
secure.

» These applications may be written once, and then
deployed on any server platform that supports the
Enterprise JavaBeans specification.

Chap 3: Roles and Scenarios

31-Jan-2005 cse403-08-architecture © 2005 University of Washington 11

 Discusses the responsibilities of
» Enterprise Bean Provider (Aardvark, Wombat)
» Application Assembler (Wombat)
» Deployer (IT Staff)
» EJB Container and Server Providers (Acme)
» System Administrator (IT Staff)

 with respect to the Enterprise JavaBeans
architecture.

31-Jan-2005 cse403-08-architecture © 2005 University of Washington 12

Module view of deployed application

T

HR module

ﬁ Payroll module

Employee
Record

6.2.2 What a container provides

The following diagram illustrates the view that a container provides to clients of session beans that pro-
wvide local and/or remote client views. Note that a client may be a local client of some session beans and
a remote client of others

Client View of session beans deployed in a Container

container

)

deployed — T A;rdvaﬁk ﬁ
JSP pages ayre EJBObjects
ABC’s ERP System EJBHome
deploved enterprise beans client session bean 1
ACME EJB Container o, ;
A Web Server & / ABC’s pension
- plan application
_ ACME EJB Server j)
EJBLocalObjects
(c) Wombat’s application is deployed in ACME’s EJB Container at the ABC enterprise. EIBLocallome
session bean 2
31-Jan-2005 cse403-08-architecture © 2005 University of Washington 13
Figure 21 Example of Inheritance Relationships Between EJB Classes
Jitva. rti. Remote fava.io.Serfalizable
Inheritance 0k State Transition
Rd a‘“ onsh| s T — T === == D| ram client’s method on reference
P) Ememise &« generates NoSuchObjectException or
EJBMetaData EJBObject EnterpriseBean jupeune NaSuchObjectLocal Exception
A EJBHome le

SessionBean

enterprise bean
provider

Cart {Wombat Inc.)
CartHome
CartBean
AcmeRemore
AemeMetaDara | AcmeHome AcmeBean

produced by
Aeme wools

AcmeCartHome AcmeRemaoteCart

AcmeCartMetaData AemeCariBean

—= extends or implements interface
—m= extends implementation, code generation, or delegation

Java interface Java class

v

does not exist

does not exist

release reference

and an
not referenced referenced

object.remove(),
home. remaovey...),
system exception in bean,
bean timeout,
or

home.create<METHOD>{...}

Container crash,
or bean timeout
Container crash

handle.getl JBObject()

exists
and
referenced

A

client’s method on reference

exists

and
not referenced

release reference

A session object does not exist until it is created. When a client creates a session object, the client has a
reference to the newly created session object’s component interface.

Object Interaction
Diagram

Figure § OID for session object at start of a mansaction.

container provided classes

client EIB EJB container session synchro- | instance transaction database
(Local) (Local) context Mization service
Home Object
1 I I 1 I
[P | R begl | | |
|_javax transaction. User Transaction. begin() . N -
k t t
business method | | 1
|

If the instance was passivited it is teactivated

new

register Synchrmuzalmu_synchlfmlzalim\)

!
[
[
[
I
[
[
[
|
i
[

read some Kata

business method

| business method

business method
— -y
| |
| | |

—_—— ———

|
|
|
|
|
|
|
|
|
|
|
|
| afterBegin
|
|
|
|
|
|
|
|
|
|
|

t
register resoyrce manager

Data Flow Diagrams (DFD)

» DFDs document a process by documenting the
flow of data throughout the process.

» sguare external data source or sink
» arrow data flow
» circle process input data to output data
» paralel lines data store

system user i

S

1D confirmation m

31-Jan-2005 cse403-08-architecture © 2005 University of Washington 18

Why do boxes and lines persist?

Boxes and Lines are generally understandable and adaptable

. Negotiate to
Change A’s Publish 1 o55rm find common
form to abstraction ;4o gy form for A& B

B’s form of A’s for
0 B
N

B
o) 07 '®
Attach adaptor Introduce Provide B with @
or wrapper to A intermediate import/export Make B
form convertor multilingual

9 | Maintain parallel consistent versions

Figure 4: Some mismatch repair techniques, from Garlan, Software Architecture

31-Jan-2005 cse403-08-architecture © 2005 University of Washington

19

