
26-Jan-2005 cse403-07-design © 2005 University of Washington 1

Design

CSE 403, Winter 2005
Software Engineering

http://www.cs.washington.edu/education/courses/403/05wi/

26-Jan-2005 cse403-07-design © 2005 University of Washington 2

References
» Programming Considered as a Human Activity, EW

Dijkstra, Proceedings of the IFIP Congress 65
» On the Criteria To Be Used in Decomposing Systems into

Modules, DL Parnas, Comm. of the ACM, V15, No 12,
Dec 1972
• http://www.acm.org/classics/

» The Hundred-Year Language, Paul Graham
• http://www.paulgraham.com/hundred.html

» Structure and Interpretation of Computer Programs
(SIPC), Abelson & Sussman

» Quotations on simplicity of design
• http://www.ilstu.edu/~asharm4/quotations.htm

26-Jan-2005 cse403-07-design © 2005 University of Washington 3

Design principles

• The driving force behind design is managing complexity
• “Programs must be written for people to read, and only

incidentally for machines to execute.”
» SIPC, Abelson & Sussman

• A basis for studying information hiding, layering,
patterns, etc.

• The basic principles underlying software design
» Modularization
» Coupling
» Cohesion

26-Jan-2005 cse403-07-design © 2005 University of Washington 4

What is design?

• The activity that leads from requirements to
implementation

• If the requirements are the “what” then the
design (with an associated implementation) is
the “how”

26-Jan-2005 cse403-07-design © 2005 University of Washington 5

Dijkstra: Quality of Results
• We should ask ourselves the questions:

» When an automatic computer produces results, why do we
trust them, if we do so?

» What measures can we take to increase our confidence that
the results produced are indeed the results intended?

• The programmer’s situation is closely analogous to
that of the pure mathematician, who develops a
theory and proves results.
» One can never guarantee that a proof is correct; the best

one can say is “I have not discovered any mistakes.”
» … we do nothing but make the correctness of our

conclusions plausible. So extremely plausible, that the
analogy may serve as a great source of inspiration.

Programming Considered as a Human Activity

26-Jan-2005 cse403-07-design © 2005 University of Washington 6

Dijkstra: Structure of Convincing Programs

• The technique of mastering complexity has been
known since ancient times: divide et impera (divide
and rule).
» The analogy between proof construction and program

construction is, again, striking.
» In both cases the available starting points are given; … the

goal is given; … the complexity is tackled by division into
parts.

• I assume the programmer’s genius matches the
difficulty of his problem and assume that he has
arrived at a suitable subdivision of the task.

Programming Considered as a Human Activity

26-Jan-2005 cse403-07-design © 2005 University of Washington 7

Dijkstra: Dissection
• Proceed in the following stages

» make a complete specification of the parts
» show the problem is solved by the specified parts
» build the parts that satisfy the specifications,

independent of one another and their context
• The technique relies on what I should like to

call “The principle of non-interference.”
» take into account the exterior specifications only
» not the particulars of their construction

Programming Considered as a Human Activity

26-Jan-2005 cse403-07-design © 2005 University of Washington 8

Boole: Unity and Harmony
• An Investigation of the Laws of Thought, on Which are

founded the Mathematical Theories of Logic and Probabilities
» Of the Conditions of a Perfect Method

I do not here speak of that perfection only which consists in
power, but of that also which is founded in the conception of
what is fit and beautiful. It is probable that a careful
analysis of this question would conduct us to some such
conclusion as the following, viz., that a perfect method
should not only be an efficient one, as respects the
accomplishment of the objects for which it is designed, but
should in all its parts and processes manifest a certain unity
and harmony.

Programming Considered as a Human Activity

26-Jan-2005 cse403-07-design © 2005 University of Washington 9

Graham: Language Core

• Any programming language can be divided into two
parts: some set of fundamental operators that play the
role of axioms, and the rest of the language

• I think it's important not just that the axioms be well
chosen, but that there be few of them.
Mathematicians have always felt this way about
axioms-- the fewer, the better-- and I think they're
onto something.

The Hundred-Year Language

26-Jan-2005 cse403-07-design © 2005 University of Washington 10

Motivation for Modules

• Managing complexity
• Independent development and maintenance
• Reuse

» Component reuse
» Application reuse

• Portability
• Versioning

26-Jan-2005 cse403-07-design © 2005 University of Washington 11

Parnas: Decomposing Systems into Modules

• Almost always incorrect to begin the
decomposition of a system into modules on the
basis of a flowchart (ie, control flow)

• Begin with a list of difficult design decisions or
design decisions which are likely to change
» each module hides such a decision from the others
» since design decisions transcend time of execution,

modules will not correspond to steps in the
processing

26-Jan-2005 cse403-07-design © 2005 University of Washington 12

Coupling and cohesion

• Given a decomposition of a system into modules, one
can partially assess the design in terms of cohesion
and coupling

• Loosely, cohesion assesses why the elements are
grouped together in a module

• Loosely, coupling assesses the kind and quantity of
interconnections among modules

26-Jan-2005 cse403-07-design © 2005 University of Washington 13

“Good” vs. “bad” cohesion

• Best: functional, where the elements collectively
provide a specific behavior or related behaviors

• Worst: coincidental, where the elements are collected
for no reason at all

• Many other levels in between
• Cohesion is not measurable quantitatively

» do these functions and ideas “belong together”?

26-Jan-2005 cse403-07-design © 2005 University of Washington 14

“Good” vs. “bad” coupling

• Modules that are loosely coupled (or
uncoupled) are better than those that are tightly
coupled

• Why? Because of the objective of modules to
help with human limitations
» The more tightly coupled are two modules, the

harder it is to work with them separately, and thus
the benefits become more limited

26-Jan-2005 cse403-07-design © 2005 University of Washington 15

How to assess coupling?

• Types and strengths of interconnections
• There are lots of approaches to quantitatively

measuring coupling
» No single number that decisively indicates good or bad
» But you can still get useful information about your code

• JavaNCSS counts Non Commenting Source Statements (NCSS),
packages, classes, functions and inner classes, and calculates
Cyclomatic Complexity Number

• JDepend traverses Java class and source file directories and
generates design quality metrics for each Java package

26-Jan-2005 cse403-07-design © 2005 University of Washington 16

Choose your metrics ...

http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.htmlNASA Software Assurance Technology Center (SATC)

26-Jan-2005 cse403-07-design © 2005 University of Washington 17

“Good” vs. “bad” waste

• I learned to program when computer power was scarce ... The
thought of all this stupendously inefficient software burning up
cycles doing the same thing over and over seems kind of gross
to me. But I think my intuitions here are wrong. I'm like
someone who grew up poor, and can't bear to spend money
even for something important, like going to the doctor.

• There's good waste, and bad waste. I'm interested in good
waste -- the kind where, by spending more, we can get simpler
designs. How will we take advantage of the opportunities to
waste cycles that we'll get from new, faster hardware?

• Most data structures exist because of speed.

Graham: The Hundred-Year Language

26-Jan-2005 cse403-07-design © 2005 University of Washington 18

More power supports better abstraction

• Another way to burn up cycles is to have many layers
of software between the application and the hardware.

• This too is a trend we see happening already: many
recent languages are compiled into byte code.
» Bill Woods once told me that, as a rule of thumb, each

layer of interpretation costs a factor of 10 in speed. This
extra cost buys you flexibility.

Graham: The Hundred-Year Language

26-Jan-2005 cse403-07-design © 2005 University of Washington 19

Lisp: World Domination?
• Cobol, for all its sometime popularity, does not seem to

have any intellectual descendants. It is an evolutionary
dead-end -- a Neanderthal language. I predict a similar
fate for Java.

• I don't predict the demise of object-oriented
programming, by the way. Though I don't think it has
much to offer good programmers, except in certain
specialized domains, it is irresistible to large
organizations. Object-oriented programming offers a
sustainable way to write spaghetti code. It lets you accrete
programs as a series of patches. Graham: The Hundred-Year Language

26-Jan-2005 cse403-07-design © 2005 University of Washington 20

Elegance for better living

• The key to performance is elegance, not
battalions of special cases.
» Jon Bentley and Doug McIlroy

• Premature optimization is the root of all evil
(or at least most of it) in programming.
» Donald Knuth

• Quotations on simplicity of design
» http://www.ilstu.edu/~asharm4/quotations.htm

