Life Cycle

CSE 403, Winter 2005
Software Engineering

http://www.cs.washington.edu/education/courses/403/05wi/

Readings and References

• Reading

• Other References
 » Anchoring the Software Process, Barry Boehm, USC, 1995
 • http://citeseer.nj.nec.com/boehm95anchoring.html

The dreams of yesterday

• Boehm [1995]
 » "For a few golden moments in the mid-1970's, it appeared that the software field had found a sequence of common anchor points"
 » "a sequence of milestones around which people could plan, organize, monitor, and control their projects"

A Lifecycle

• The main function of a lifecycle model is to establish order in which project events occur
• Typical events include
 » specification, prototype, design, implementation, test, deliver, and do it again
• But they usually don't happen in nice clean little stages like this
 » so we develop various models and tweaks to try to maintain the benefits and still be realistic
"good enough" now vs "perfect" later

- The goal is often
 - not to achieve what you said you would at the beginning of the project
 - but to achieve the maximum possible within the time and resources available
 - Sherman 1995, reference in McConnell
- Do deliver a small and useful tool on time
- Don't deliver a monster way too late
 - Fancy doodads have a tendency to be junk anyway

Characteristics

- Orderly sequential model
- Stages are disjoint
 - they don't overlap and you can't go forward until you've completed the current stage
 - you can't go back except with extreme difficulty
- Reviews at each stage to determine if ready to advance to next stage
- Document driven
 - specific documents will be complete at each stage
 - yeah, right

Some issues

- Very difficult to specify all requirements completely and correctly all at once
 - completely → lots and lots of detail
 - correctly → every single detail is correct
 - produces masses and masses of detail that will be irrelevant if some early decision changes
- Difficult to accurately say everything at once
- Gold plating requirements is tempting
- Inflexible solutions based on invalid detail
More issues

• Since so much is resting on getting it right before leaving each stage, the reviews tend to be massive affairs
 » a lot of work goes into preparing for each review
 » that makes it even more expensive to change direction if a review shows problems
 » if a review is delayed or problems are found, the entire project sits in a loop while the problems are resolved - $$$

Salmon lifecycle model

You can go upstream, but it's hard

Code and fix

Code and fix is dangerous

• No means of assessing progress
 » nasty surprises are not a good thing for your career
 » Yes: "I'm not worried, I know where they are in the project and they always deliver a useful product on time."
 » No: "I don't know. You remember the project when they were 95% complete for three months and then cancelled?"

• Risk of complete project failure right up to delivery
Spiral Model

- Oriented towards phased reduction of risk
- Take on the big risks early and make some decisions
 - are we building the right product?
 - do we have any customers for this product?
 - is it possible to implement the product with the technology that exists today? tomorrow?
 - does the company want to be in this business? should the company be in this business?

Spiral Model

Spiral steps

- Determine objectives, alternatives, constraints
- Identify and resolve risks
- Evaluate alternatives
- Develop the deliverables for the iteration and verify that they are correct
- Plan the next iteration
- Commit to an approach for accomplishing the next iteration or cancel the project
Spiral early and often

- The spiral model is especially appropriate at the beginning of the project when the requirements are still fluid
- Risk reduction is the key element
 - early cancellation of bad projects is a major benefit
 - confidence that you're building the right product is a major benefit

Milestones

- Key elements of project milestones
 - stakeholder concurrence on the system's objectives
 - determination and validation of system architecture
- Traditional
 - Requirements review, preliminary design review, final design review, acceptance test
- Boehm Spiral
 - Lifecycle Objectives, Lifecycle Architecture, Initial Operating Capability

Elements of Lifecycle Objectives (LCO)

- Operational Concepts - What is it?
 - Top level system objectives and scope
- System Requirements - What does it do for us?
 - essential system features at an appropriate level
- System and software architecture - How?
 - support analysis of feasibility at this level
- Lifecycle plan - Who wants it? Who'll support it?
 - identification of the major stakeholders now, future
- Feasibility Rationale - Is this really true?
 - Evaluate conceptual integrity and compatibility

Elements of Lifecycle Architecture (LCA)

- Operational Concepts - What is it?
 - Elaboration of objectives and concepts
- System Requirements - What does it do for us?
 - Functions and interfaces, identify TBDs
- System and software architecture - How?
 - What is the actual design selection. Any risks?
- Lifecycle plan - Who wants it? Who'll support it?
 - Elaboration of who does what over the lifecycle
- Feasibility Rationale - Is this really true?
 - Evaluate conceptual integrity and compatibility
Initial Operational Capability (IOC)

- Software preparation
 - Are we really ready to go live?
 - Good release, support software, docs, data, ...

- Site preparation
 - Facilities, equipment, supplies, commercial off-the-shelf software (COTS) in place, ...

- User, operator, maintainer preparation
 - training, team building, for everyone who will be actually working with the darn thing