
Section 06: Discussion Points
(covered in 45 minutes)

(Continuing on the theme from “The Joel Test: 12 Steps to Better Code”)
Which of the following steps does your team currently take?
• Automated testing

o Unit tests (JUnit, NUnit)
o Acceptance (end-to-end) tests: following use cases from start to finish
o Coverage metrics (very important for the final release)
o Results: 1 of 6 teams currently have some unit and acceptance tests.

• Documenting along with code development (rather than at the last moment)
o User documentation (how can a customer use your product)
o Technical documentation (major design decisions, assumptions, updated design docs, etc.)
o Results: 2 of 6 teams have been doing it.

• Zero-feature release
o Typically includes unit tests and documentation (and preferably a little demo the user can play with),

not just oodles of source code.
o If you leave it for later, it'll hurt you (but you probably won't believe me till that happens).

When will your software be ready to ship?
• Without ongoing automated tests, documentation, and daily builds -- it's anybody's guess, so it's a big risk.
• With all the above done concurrently, plus real-time coverage metrics (how do you know that it works?), it's

ready to ship at any moment, so the risk is minimal to non-existent. From a business standpoint this is a
huge advantage, because unexpected things do happen and a company in a competitive environment must be
able to react to those as quickly and as predictably as possible.

o The two questions of management:
§ When is it going to be done?
§ How much will it cost?

What is a beta release?
• It's a contract between a customer and a provider (i.e., you).

o The 5 components of a contract:
§ What: The deliverable
§ Who: The customer and the provider
§ By when: The due date (and time)
§ How: The set of quality criteria that the deliverable must satisfy
§ Success indicator: how to tell if the contract is/isn't completed

• Includes the latest sources and binaries, unit and acceptance tests, user and technical documentation, a
(small) demo, and release notes. The user must be able to find their way through without assistance from
developers.

What if I asked you today to deliver tomorrow? Do you have readiness?
How can you respond to such a request?
• Speech Acts:

o 4 possible ways to respond to requests (see handout):
§ Yes
§ No
§ Counter-offer
§ Commit to commit

o All of the above are essential; inability to take one (or more) of these paths when a request is made
indicates a communication problem and a threat to evolve into a product delivery problem.

