W Robust Coding and Debugging

CSE 403

1 Outline

= Writing solid code
= Errors, asserts, exceptions
= Debugging practices

| Resources

= 403 Sp'05

= “The Practice of Programming,” by
Brian Kernighan and Rob Pike

= “The Pragmatic Programmer,” by
Andrew Hunt and David Thomas

"It'sa painful thing
To look at your own trouble and know

That you yourself and no one else has madeiit."
— Sophocles, Ajax

Don’t do this

= #include <stdio.h>
char *T="TeJKLMaYQCE]jbZRskc[SIdUAV\\X <[<:90'\"$434-./2>]s
K[g] 1000], *FxA*(Ig'I 2}] *] r[4], ¢ NY, *\(3 \»uk q[D x() r$[r [r[3/] |J|[1
X&1)][*r= v, 1 2—]x+1Y (((
)7*rrx>>3 Fix< r)& ;EO{A] |B((X 0,1 —J x— &g(*T>>A*3)J[(x[F]»
"A*7]— [x&3 "A*(*M S E(
1] (%)[% [x&1], x& (A") (E)J+ w&gl()gz(88
YB(){*I&8 i(D *J Q[z] D&&D k[l [R&(*
0&&D 13)&&(! r& ++=0) * r=1)||64< &D<91&&(*r 0,*g++=D:
63)||D >= 97&&D- & *r—O g++ =D-95)||/(D-k[3]
&&(*r=0,%g++= 12) [D>K[3]&&D< =k 1] -18& *r= * ++ D47 J+4));3(
pumhar(E) }b() (] A=(*K)[D* W+ r[2] Y+xl) <Y }t
{0((b(Daldfx-0)A (r+1): Y)f&t IR
n

(r+1)<Y? (A=((
ng(é Og&?i[iy Ssigé'é(gg}ol[gﬁ ’g*(r[';'*r&& 2 0))i oS]-é =

% C J=(A=0) [K
Kl)u;_g]}(Lo B NS S

G0

1 Writing solid code

= Shred your garbage

void FreeMemory(void *pv){
Assert(pv !'= NULL);
memset(pv, 0xA3, sizeofBlock(pv);
free(pv);

= Force early failure, increase determinism
= Why 0xA3?

1 Coding quiz

char tolower(char ch){

return ch — ‘A’ + a’;

| Handling out of range inputs

= Ignore
= Return error code
= Assert

= Redefine the function to do something
reasonable

= Write functions that, given valid inputs,
cannot fail

| Candy machine interfaces

= Error prone return values or arguments
charc;
¢ = getchar();
If (c == EOF) ...
= Classic bad example, getchar() returns an int!

= Alternate approach
= bool fGetChar(char pch);

= Many bugs with malloc returning NULL

| Assertions

= Don't use assertions to check unusual
conditions
= You need explicit error code for this

= Only use them to ensure that illegal
conditions are avoided

1 Exceptions

= Put error handling in a single place
= Exceptions should be reserved for
unexpected events
= It is exceptional if a file should be there
but isn't
= It is not exceptional if you have no idea if
the file should be exist or not

| Debugging

= What are the key steps in debugging a
program?

| Step through your code

= Maguire
= Step through new code in the debugger
the first time it is used
= Add code, set break points, run debugger
= Add code, run tests, if failure, run debugger

= Knuth

= Developed tool to print out first two
executions of every line of code

Kernigan and Pike's debugging
1 wisdom

= Look for common patterns

= Common bugs have distinct signatures
= int n; scanf("%d", n);

= Examine most recent change

= Don't make the same mistake twice
= Debug it now, not later

= Get a stack trace

= Read before typing

| K&P, I

= Explain your code to someone else

= Make the bug reproducible

= Divide and conquer
= Find simplest failing case

= Display output to localize your search
= Debugging with printf()

= Write self checking code

= Keep records

| Don't do this

try{
doSomething();

}
catch (Exception e){

}
= Can cover up very bad things
= Violates K&P: Debug it now, not later

Should debug code be left in

| shipped version

= Pro:
= Debug code useful for maintenance
= Removing debug code change behavior
= Bugs in release but not debug versions
= Con:
= Efficiency issues

= Different behavior for debug vs. release
= Early fail vs. recover

Apocryphal (but still a good
1 story)

= A program which fails only in the month
of September

Apocryphal (but still a good
| story)

= A program which fails only in the month
of September

char monthName[9];

strcpy(monthName, "September");

