ﬂ Design Patterns and Refactoring

CSE 403

1 Outline

= Design Patterns
= Refactoring
= Refactoring patterns

1 Resources

= CSE 503 Sp ‘04 lecture, CSE 403 Sp 05

= Gamma, Helm, Johnson, Vlissides
(“"Gang of four”): Design Patterns:
Elements of reusable object-oriented
software

= Shalloway and Trott: Design Patterns
Explained

= Martin: Agile Software Development

1 Design Patterns

= Is design mostly routine or innovative?

= Design Patterns are a way of recording
design knowledge

= Christopher Alexander first described
patterns in architecture

1 What is a pattern

= Pattern name
= Problem
= Solution
= Consequences

| Gang of Four patterns

creational structural lbehavioral
Scope [class factory method fadapter (class) interpreter
ftemplate method
pbject abstract factory fadapter (object) ichain of responsibility
builder bridge fcommand
prototype fcomposite iiterator
singleton decorator mediator
facade imemento
flyweight fobserver
proxy istate
istrategy
visitor

1 Problem: delay choice of type

Typical OOP program hard-codes type choices
void Applnit () {
#if MAC
W ndow w = new MacW ndow(...);
Button b = new MacButton(...);

#el se
W ndow w = new XpW ndow(...);
Button b = new XpButton(...);
#endi f
w. Add(b);

}
We want to easily change the app’s “look and feel”, which means
calling different constructors.

| Factory method

Wrap the constructors in “factory methods”
cl ass LookAndFeel Factory {
LookAndFeel Factor ();
W ndow Creat eW ndow (...);
Button CreateButton (...);

}

voi d Applnit (LookAndFeel Factory factory) {
W ndow w = factory. CreateWndow(...);
Button b = factory.CreateButton(...);
w. Add(b) ;

}

Problem: selection of an algorithm
| depends on client or data

= You have a set of algorithms that do
basically the same thing, but
implemented differently

= Want to separate the algorithm from
the implementation

1 Strategy

= A Strategy specifies the interface for
how the different algorithms will be
used

= Concrete strategy classes implement
the algorithms

= Context forwards client requests to
appropriate concrete strategy

= Example: Sockets

Refactoring: Motivational
| Examples

= What is common among the following?
(1) x = ((p<=1) ? (p?0:1) : (p==4)?2:(p+1));
(2) while (*a++ = *b++) ;

)1+ 11+ YA+Q/1) + ... =2

| Refactoring — What Is It?
= What is refactoring?

= Modifying code to improve its structure without
changing functionality

= “the process of changing a software system in such
a way that it does not alter the external behavior of
the code yet improves its internal structure” (Fowler)

= What is the opposite of refactoring?

= Why might one want to do it?

| Refactoring — Why Do It?
= Why is it necessary?

= A long-term investment in the quality of the code and its
structure

= Without proper maintenance, code tends to "rot" as its structure
deteriorates when quick last-minute fixes are made and unplanned
features are added

. Doing;_lno refactoring may save on costs in the short term but
pays huge interest in the long run
= “Don't be penny-wise but hour-foolish!”

= Why fix it if it ain't broken? Every module has
three functions:
= (@) to execute according to its purpose;
= (b) to afford change;
= (c) to communicate to its readers.
It it doesn't do one or more of these, it's broken.

| Refactoring — When to Do It?

= Refactoring is necessary from a business
standpoint too

= Helps with predictable schedules and high output at
lower cost

= ROI for improved software practices is 500% (!) or
better

= By doing refactoring a team saves on unplanned
defect-correction work

= When is refactoring necessary?
= Best done continuously, along with coding and
testing
= Very hard to do late, much like testing
= Often done before plunging into version 2

1 Types of Refactoring

= Renaming (methods, variables)

= Naming (extracting) "magic" constants

= Extracting common functionality into a service / module /
class / method

= Extracting code into a method

= Changing method signatures

. Splittin(_i one method into several to improve cohesion and
readability (by reducing its size)

= Putting statements that semantically belong together near
each other

= Exchanging risky language idioms with safer alternatives

= Clarifying a statement (that has evolved over time or that is
hard to “decipher”)

= Performance optimization
= http://www.refactoring.com/catalog/index.html

| Refactoring patterns

= From
http://industriallogic.com/xp/refactoring/catalog.html

= E.g., Chain Constructors, Extract
Adapter, Introduce Null Object, Replace
Conditional Logic with Strategy

| Chain constructors

= Problem: You have constructors that
contain duplicate code.

= Chain the constructors together to
obtain the least duplicate code.

public class Loan {
public Loan(float notional, float outstanding, int rating,
Date expiry) {
this(new TernROC(), notional, outstanding, rating,
expiry, null);
}

public Loan(float notional, float outstanding, int rating,
Date expiry, Date maturity) {
thi s(new Revol vi ngTer nROC(), notional, outstanding,
rating, expiry, maturity);
}

public Loan(Capital Strategy strategy, float notional,
float outstanding, int rating, Date expiry, Date
maturity) {

Summary:
L Top Reasons for Refactoring

= Improving readability (and hence productivity)
= Responding to a change in the spec/design by
improving cohesion
= Or anticipating such a change

= “If bug rates are to be reduced, each function needs to
have one well-defined purpose, to have explicit single-
purpose inputs and outputs, to be readable at the point
where it is called, and ideally never return an error

condition.” Steve Maguire -- “Writing Solid Code”

Language Support for
| Refactoring

= Modern development environments (e.g.,
Eclipse) support:

variable/method/class renaming

method or constant extraction

extraction of redundant code snippets

method signature change

extraction of an interface from a type

method inlining

providing warnings about method invocations with
inconsistent parameters

= help with self-documenting code through auto-completion

= Older develogment environments (e.g., vi,
Emacs, etc.) have little or no automated support
= Discourages programmers from refactoring their code

