Lecture 09:
Fundamental Principles and Best

! Practices for Software Design

Valentin Razmov

14 Jul 2005 CSE403, Summer'05, Lecture 09

Outline

n Best practices for software design (cont. from
Lecture 08)

n Principles for good design

n Software systems building good practices
n Examples of bad design practices

n How detailed should a design be?

14 Jul 2005 CSE403, Summer'05, Lecture 09

‘_-’ Resources

n Code Complete (2 ed.), chapter 5,
by Steve McConnell,
http://www.cc2e.com/docs/Chapter5-Design.pdf

n Design Patterns Explained — A New Perspective
on Object-Orfented Design,
by Alan Shalloway and James Trott

n Agile Software Development — Principles,
Patterns and Practices,
by Robert C. Martin

14 Jul 2005 CSE403, Summer'05, Lecture 09

How to Approach Design
(a reminder)

Treat design as a wicked, sloppy, heuristic process.
Don't settle for the first design that occurs to you.
Collaborate. Strive for simplicity. Prototype when you
need to. Iterate, iterate, and iterate again. You'll be
happy with your designs.”

-- Steve McConnell, Code Complete (2" ed.), ch.5

“There are two ways of constructing a software design:
one way is to make it so simple that there are
obviously no deficiencies; the other is to make it so
complicated that there are no obvious deficiencies.”

-- C.A.R. Hoare (1985)

14 Jul 2005 CSE403, Summer'05, Lecture 09

Best Practices for Software
Design (cont.)

n Favor composition over inheritance.
» Example:

14 Jul 2005 CSE403, Summer'05, Lecture 09

Principles for Good Design:
Single Responsibility Principle

“A class should have only one reason to change.”
Principle of strong cohesion

“God-object” metaphor

Example 1: Putting state in a GUI class.

» Model-View-Controller pattern helps to avoid this.
n Example 2: Where is this principle violated below?
interface Modem {

public void dial (String pno);
public void hangup();

public void send (char c);
public char recv();

s 5 3 3

14 Jul 2005 CSE403, Summer'05, Lecture 09

Principles for Good Design:
Open-Closed Principle

n “Software entities (classes, modules, functions,
etc.) should be open for extension but closed
for modification.”

n Example: An abstract class to extend (with as
many new subclasses as needed) rather than
modifying an existing class to accommodate
each new addition.

n The designer chooses what changes to
anticipate and what parts of the system to “fix.”

14 Jul 2005 CSE403, Summer'05, Lecture 09

Principles for Good Design:
Interface Segregation Principle

n “Clients should not be forced to depend on
methods that they do not use.”

n Example: Dogs jump but don't sing. J

14 Jul 2005 CSE403, Summer'05, Lecture 09

Principles for Good Design:

‘_-’ Dependency Inversion Principle

n (A) “High-level modules should not depend on
low-level modules. Both should depend on
abstractions.”

n (B) “Abstractions should not depend on details.
Details should depend on abstractions.”

n Example: Separation of policy and mechanism

14 Jul 2005 CSE403, Summer'05, Lecture 09

Principles for Good Design:

Dependency Inversion Principle
* (Example)
#define TEMP_GAUGE 0x86 void Regulate(

#define FURNACE 0x87 Thermometer t, Heater h,

#define ENGAGE 1 double minTemp,
#define DISENGAGE 0 double maxTemp)
{
void Regulate(for(;;) {
double minTemp, double maxTemp) while (t.Read() > minTemp)
wait(1);
for(;;) { h.Engage();
while (read(TEMP_GAUGE)>minTemp) while (t.Read() < maxTemp)
wait(1); wait(1);
set(FURNACE, ENGAGE); h.Disengage();
while (read(TEMP_GAUGE)<maxTemp) 3
wait(1); b

set(FURNACE, ENGAGE);
}

} 14 Jul 2005 CSE403, Summer'05, Lecture 09

Principles for Good Design:
Liskov Substitution Principle

n “Subtypes must be substitutable for their base
types.”

n This is different from saying that there must
be an IS-A relationship between the two types.

» Example: Is Sguare always substitutable for
Rectangle?

14 Jul 2005 CSE403, Summer'05, Lecture 09

Examples of Bad Designs
Practices

n “Design by committee”

» Everyone on the committee puts in their favorite
features into the soup. What is the result?

» Moral: The design must be owned and managed by
someone.

n Other examples you have heard of?

14 Jul 2005 CSE403, Summer'05, Lecture 09

Additional Best Practices for
Building Software Systems

n Make the common case fast and the
uncommon case correct.
» But do not spend time on optimizing code early on.

n “It [s easfer to optimize correct code than to correct
optimized code.”-- Donald Knuth

n Establish and maintain a clear audit trail.

» It requires little investment upfront but is invaluable
for debugging purposes.

14 Jul 2005 CSE403, Summer'05, Lecture 09

How Detailed Should It Be?

Table 5-2 Design Formality and Level of Detail Needed

Factor

Level of Detail Needed
in Design Before
Construction

Documentation
Formality

Design/construction team
has deep experience in
applications area.
Design;/construction team
has deep experience but
is inexperienced in the
applications area.
Design/construction team
is inexperienced.
Design/construction team
has moderate-to-high
turmover

Application is
safety-critical.
Application is
mission-critical.

Project is small.

Project is large.

Software is expected to
have a short ifetime
(weeks or months).
Software is expected to
have a long lifetime
(months or years).

Low Detail

Medium Detail

Medium to High Detail

Medium Detail

High Detail
Medium Detail
Low Detal

Medium Detail
Low Detail

Medium Detail

Low Formality

Medium Fermality

Low-Medium Formality

High Formality
Medium-High Formality
Low Formality

Medium Formality
Low Formality

Medium Formality

Your Questions on Principles and
Practices for Software Design

14 Jul 2005 CSE403, Summer'05, Lecture 09

