‘_-’ Student Startup Sequence

n Verify network n Test student

connection submissions
n Rotate to Landscape n Have you used a
mode tablet PC before?

n Start Presenter 2.0
Maximize Application

>

Role->Student n Select All
Connect->Classroom 1 n Send Selection

B

B

24 Jun 2005 CSE403, Summer'05, Lecture 03

Lecture 03:
* The Fate of Software Projects

Valentin Razmov

24 Jun 2005 CSE403, Summer'05, Lecture 03

Outline

n The Fate of Software Projects
n Is Software Different?

n Lessons from the History of Software
Development

24 Jun 2005 CSE403, Summer'05, Lecture 03

References

n “Professional Software Development”, Steve
McConnell

» “Rapid Prototyping”, Steve McConnell

24 Jun 2005 CSE403, Summer'05, Lecture 03

The Fate of Software Projects

‘_-| in Industry: Question
n Under some reasonable definition of a “project”

(you make it up), what would you guess is the
percentage of software projects that fail (i.e.,
that don't accomplish their goals)?

Choose the range in which your estimate falls:
q 0-20%

q 20-40%

q 40-60%

q 60-80%

q 80-100%

24 Jun 2005 CSE403, Summer'05, Lecture 03

The Fate of Software Projects
in Industry: Answers

n Here is how undergraduate students in software
engineering (CSE403) voted (left) vs. how graduate
students (in CSE590ET) voted (right):

% of students who answered this
NN
Sk
+ % of students who answered thi

0-20% 20- 40- 60- 80-
40% 60% 80% 100%

0-20% 20- 40- 60- 80-
40% 60% 80% 100%

n Historically, nearly 85% of software projects fail.
24 Jun 2005 CSE403, Summer'05, Lecture 03

Chief Reasons for Software
Project Failures: Question

n What might be the main reasons behind such a
large percentage of software project failures?

State one reason that you think is prevalent.

24 Jun 2005 CSE403, Summer'05, Lecture 03

Chief Reasons for Software
Project Failures: Student Answers

SE403 students in the past said:
Insufficient planning: poor risk analysis, lack of
knowledge, lack of motivation, poor decomposition, etc.

Too “rosy” assumptions (about future technology,
scheduling, etc.)

Poor communication

Changes to the requirements

Changes in the context (funding, priorities)
Doing something without a clear customer base
Competition

Entrepreneurial nature of software (unlike other

engineering disciplines)
24 Jun 2005 CSE403, Summer'05, Lecture 03

n

s

s

s

s

s

s

s

Chief Reasons for Software
Project Failures: Student Answers
n Graduate students (in CSE590ET) stated:

Cost overruns

Changing of requirements
Misunderstanding of requirements
Poor understanding of goals
Over-ambitious goals

Lack of clear specification

Original goals were unrealistic

Poor planning/research

Lack of planning

Lack of a reasonable & structured software/feature plan
No commercial market for end product

» Complexity of software
24 Jun 2005 CSE403, Summer'05, Lecture 03

Chief Reasons for Software Project
Failures: What Professionals Say

n According to most professionals, the majority of
software projects fail...
» not because of technical deficiencies or problems
» but because of underestimating or sometimes even
completely ignoring the human aspect, including:
» the relationship with the customers
» regular and explicit communication between all stakeholders —
managers, developers, testers, marketing, sales, customers
» Examples:
» Building a product that no one wants to buy

» Sabotaging a product (for “political” reasons) that otherwise

may have succeeded
24 Jun 2005 CSE403, Summer'05, Lecture 03

Is Software Different?
(from Other Engineering Disciplines)

Arguments in favor: Arguments against:

24 Jun 2005 CSE403, Summer'05, Lecture 03

Is Software Different?

i(from Other Engineering Disciplines)

Arguments in favor:
n Testing the quality of software is harder
» The Halting Problem presents a fundamental limitation in the
extent to which software quality can be evaluated
» Most properties of software (that we care about) are unverifiable

» Unlike bridges and buildings where everything can be tested
using known procedures

n Much higher rate of failure
» May also have to do with the immaturity of the discipline
n Customers have a greater role
n» Frantic rate of technological change
» Software is easier to copy
24 Jun 2005 CSE403, Summer'05, Lecture 03

Is Software Different?

*(from Other Engineering Disciplines)

Arguments against:

n Popular perception that software is “soft”
» ... that requirements can change, “because change can
be easily accommodated”
» In reality, even though change is possible in principle,
accommodating change is very difficult
» Often forces a rewriting of the software
n Software developers still need to plan, execute,
test, and sell their products

24 Jun 2005 CSE403, Summer'05, Lecture 03

n

n

n

n

Is Software Different?
(from Other Engineering Disciplines)

More questions to consider:
Is software less reliable?
Does it break differently?
Is the environment of use of software different?
Is the culture of software development different?
and more...

24 Jun 2005 CSE403, Summer'05, Lecture 03

Lessons from the History of
Software Development

he software ‘Gold Rush’ fever periods
» High-risk, potentially high pay-off
» Typical environment: two guys in a garage
» Code-and-fix development in hopes of striking it rich by
being first-to-market in an unclaimed segment
n The in-between periods
» Lower-risk, likely lower but stable pay-off
» Typical environment: larger teams, formal processes

n Careful, quality-driven development with an emphasis
on reliability, interoperability, usability

» Very different customer base

24 Jun 2005 CSE403, Summer'05, Lecture 03

Lessons from the History of

‘_-‘ Software Development
n Level of specialization of software producers

over time
Level of
specialization
of software
producers

Time
t t t t t t
1960 1970 1980 1990 2000 2010

24 Jun 2005 CSE403, Summer'05, Lecture 03

Lessons from the History of

‘_-| Software Development
n Level of specialization of software producers

over time

Level of Everyone who took a short course

specialization could write a web server application “ P

of software but not much more ‘\The bubble
bursts

producers

One person works on OS,
another on compilers, etc.

Same person

does everything To be employed, you

need a solid background

Time
t t t t t +

1960 1970 1980 1990 2000 2010
24 Jun 2005 CSE403, Summer'05, Lecture 03

Lessons from the History of

‘_-| Software Development
n Level of expertise of software producers and

consumers over time.
» Try to annotate the interesting points!

Levelof ==

pertise N producers
of software AN _ ___ consumers
producers
and
consumers

1960 1970 1980 1990 2000 2010
24 Jun 2005 CSE403, Summer'05, Lecture 03

Lessons from the History of

‘_-’ Software Development
n Level of expertise of software producers and

consumers over time
—— producers
Leveljof = .
expertise consumers
of software So More and more non-technical
producers Producers\\ users need to learn to Software
and and consumers . use software; usability is key It))gcq;nes
CONSUMErS are often the | f‘;dlg:lir?l:sé
\ “ "
same people Ny The “bubble background
S~ bursts p
Software and hardware™ ~~ _ —__ ¥/
become mass market =0 T~~-o_____-- I
Time
t t t t t t
1960 1970 1980 1990 2000 2010
24 Jun 2005 CSE403, Summer'05, Lecture 03

Lessons from the History of
Software Development

n Driving forces behind the evolution of software
development
» Software becomes a business and a profession
» No longer just a hobby
» Best practices get distilled over time
» Productivity tools appear that aid developers
» Economic and societal trends play an increasingly
important role

24 Jun 2005 CSE403, Summer'05, Lecture 03

‘_-’ One-minute Feedback

» What one or two ideas discussed today
captured your attention and thinking the most?

n List any ideas / concepts that you would like to
hear more about. Be specific.

24 Jun 2005 CSE403, Summer'05, Lecture 03

