Outline

n Your questions
n Upcoming milestone deliverables

n Testing in the project lifecycle

n Analyzing scenarios using inference
diagrams

n Mistakes to avoid

‘_-‘ Your Questions

n On class?

» On project?

n On homework?

n On material we've discussed?
n Other?

Next Milestone —

‘_-’ Preliminary Release

Deliverables:

» Application sources and binaries
» One-step build for all sources

n Latest spec & design documents

» Keep it short! Consider the feedback I gave in the informal
discussions about what is and isn't important for customers / devs

n Release notes
» Detailed instructions on how to run a (small) demo of your app
» Known issues with prioritization

n Automated (unit and acceptance) tests
» Up-to-date schedule
» Including what has been done and what remains to be done

Issues to consider:

» Who is your audience — customers or developers? What do
they expect from a preliminary release? What defines success?

In Contrast with

‘_-‘ Final Release Deliverables...

All of the above plus:

n Separate distributions for customers and
developers

n Separate user and technical documentation
n Latest test plan

n Automated tests (unit, acceptance, etc.) that
have wider coverage
n Known issues with priorities, expressed using
Bugzilla tasks/tickets
» Using some other professional bug tracking
system is okay too

CVS & Bugzilla "snapshots"

>

CSE403
* Section 6:

Testing in the Project Lifecycle

Bonus: Common Mistakes to Avoid
Bonus: Influence Diagrams

Valentin Razmov, CSE403, Sp'05

Testing (recap)

n Testing helps to establish if

because

n Testing begins (when?)

because

Testing (recap)

n How much does each dollar invested in early
defect tracking save the project later on?
» (A) $0.25
" (B) $1.00
» (C) $7.00
» (D) $50.00
Answer: $3 - $10

n What does that imply for how much emphasis
you need to put on testing?

The V-Model and

‘_-‘ Testing throughout the Lifecycle

testing

Architecture design; \ - -----coooooooo_____.

5 ' Integration testing
Integration test planning

Detailed design;

Unit test planning _ / Unit testing

Coding

Why Test?

n More stress you feel => less testing you do
» “Testing takes precious time.”

n Less testing => more bugs left in your code
n More bugs => more stress

n How do we break this positive feedback loop?

Influence Diagrams —

Examples
Third world population Affluence relationship to
education
Availability of food Family funds
and health care available
s
Survival rate prospects education
Number of of children
children in
family Likelihood
for success
in studies

Test-Driven (a.k.a. Test-First)
Development

Why does it work?
n The sooner a defect is found, the cheaper it is.

n Less stressful programming experience

» Not putting off the biggest unknown till last
moment

n Predictable quality at all times. Product can
ship on a short notice without stress.

n Increased quality of programmers’ work;
increased respect from others

n Customers have higher confidence in product.

Mistakes Students in Previous
SwEng Classes Have Made

Testing-related:
n Not creating a testing framework from the start
» Much harder to integrate later on

» You'd be playing a catch-up game, which creates a significant
disincentive and feels like wasting time.

» Tests should be written at the same time that you write the
code, ideally even before you write the code
» Tests then serve as post-conditions
» Psychologically advantageous
n No automated tests => it's hard to make any claim
about code quality
» You may have overlooked something.
» You can't convince anyone else.
» Not having a version to play with (and test) until late

» For games this is critical - you need time before the final
release for hallway testing.

Mistakes to Watch Out for Now

Scheduling-related:

» Not leaving enough "safety net" time before major
releases in case something unexpected happens
» It often does happen in the most inopportune moment.

n Leaving too few resources (people) for a critical task
that can't be delayed

Communication-related:

n» Failing to submit key required components (e.g.,
documentation, tests, etc.)

n Submitting code without clear instructions about how
to run it if one starts from scratch

n Not having a backup person who knows how to put
together deliverables and submit

New Concepts

» One-step build
» Very effective together with automated tests

» Requires a “toolsmith”, but can be simplified and
done once or twice a day, starting it manually

n Code / module invariants

» Repeated / regression testing checks if the
invariants in the code still hold

n Test-first programming
» Reduces stress and may increase code quality

‘_-’ Favorite Related Quotes
» “Doing things right is not as important as doing the

right things.” (Drucker's Dictum)

n "Verification == Did we build the product right?
Validation == Did we build the right product?" (Barry
Boehm)

n “Doing things at the last minute is much more
expensive than just before the last minute.” (Randy
Pausch)

» “If you haven't got time to do it right, you don't have
time to do it wrong.”

n “Good judgement comes from experience.

Experience comes from bad judgement.”

“Failing to plan is planning to fail.”

“Work expands so as to fill the time available for its

completion.” (Parkinson's Law, 1957)

s

El

‘_-‘ One-minute Feedback

n What one or two ideas discussed today
captured your attention and thinking the most?

n List any ideas / concepts that you would like to
hear more about. Be specific.

