W Robust Coding and Debugging

CSE 403
Lecture 26

Summer reading
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Assertions

= Don't use assertions to check unusual
conditions

= You need explicit error code for this

= Only use them to ensure that illegal
conditions are avoided

Memory

= The memcpy examples are from Writing Solid
Code: Microsoft's Techniques for Developing
Bug-Free C Programs

= Although the book is general, lots of the
guidelines focus on memory issues
= Marking freed memory
= Not accessing freed memory
= Dealing with details of realloc

= These are real issues, but appear less
frequently in other languages

Writing solid code

= Shred your garbage

void FreeMemory(void *pv){
Assert(pv != NULL);
memset(pv, 0XA3, sizeofBlock(pv);
free(pv);

= Force early failure, increase determinism
= Why 0xA3?




Should debug code be left in

3 shipped version

= Pro:
= Debug code useful for maintenance
= Removing debug code change behavior
= Bugs in release but not debug versions
= Con:
= Efficiency issues

= Different behavior for debug vs. release
= Early fail vs. recover

3 Step through your code

= Maguire
= Step through new code in the debugger
the first time it is used
= Add code, set break points, run debugger
= Add code, run tests, if failure, run debugger
= Knuth

= Developed tool to print out first two
executions of every line of code

3 Candy machine interfaces

= Error prone return values or arguments
char c;
¢ = getchar();
If (c == EOF) ...
= Classic bad example, getchar() returns an int!

= Alternate approach
= bool fGetChar(char pch);

= Many bugs with malloc returning NULL

3 Another coding quiz

char tolower(char ch){

3 Handling out of range inputs

= Ignore
= Return error code
= Assert

= Redefine the function to do something
reasonable

= Write functions that, given valid inputs,
cannot fail

3 Debugging

= What are the key steps in debugging a
program?




Kernigan and Pike's debugging

3 wisdom

= Look for common patterns

= Common bugs have distinct signatures
= int n; scanf("%d", n);

= Examine most recent change

= Don't make the same mistake twice
= Debug it now, not later

= Get a stack trace

= Read before typing

K&P, Il

= Explain your code to someone else

= Make the bug reproducible

= Divide and conquer
= Find simplest failing case

= Display output to localize your search
= Debugging with printf()

= Write self checking code

= Keep records

My favorite bugs (and

3 stupidities)

= BI280 Business Basic Interpreter written in C
for CP/M

= Sporadic failure of parsing

= Only happened when Basic program was
changed (after being loaded)

= Parsing done by interpreter, each time a line
was executed

= Adding printf's to code also changed behavior

3 The Bug

= Uninitialized variable

= Variable used by the parser to hold a
character that would be either a binary
operator or end of line

= Parsing algorithm looked at last
character and tested if it was a binary
operator to continue parsing

3 Don't do this

try {
doSomething();

}
catch (Exception e){

}
= Can cover up very bad things
= Violates K&P: Debug it now, not later

Apocryphal (but still a good
story)

= A program which fails only in the month
of September




Apocryphal (but still a good

3 story) 3 ConferenceXP

= A program which fails only in the month = Video conferencing system would run
of September (after initial install) for about an hour
and then fail
= System would not work at all at this

char monthName[9];

point

= In a week it would start working again
(for an hour)

= Repeated recovery every week

strcpy(monthName, "September");

3 Solution

= Install process
(erroneously) set e TR
event log to -
"overwrite events o
older than 7 days

= Application was very
verbose in logging

= Failure when log
was full




