
1

Robust Coding and Debugging

CSE 403
Lecture 26

Summer reading

Don’t do this
#include <stdio.h>
char *T="IeJKLMaYQCE]jbZRskc[SldU^V\\X\\|/_<[<:90!\"$434-./2>]s",
K[3][1000],*F,x,A,*M[2],*J,r[4],*g,N,Y,*Q,W,*k,q,D;X(){r [r [r[3]=M[1-
(x&1)][*r=W,1],2]=*Q+2,1]=x+1+Y,*g++=((((x& 7) -1)>>1)-
1)?*r:r[x>>3],(++x<*r)&&X();}E(){A||X(x=0,g =J),x=7&(*T>>A*3),J[(x[F]-
W-x)^A*7]=Q[x&3]^A*(*M)[2 +(x&1)],g=J+((x[k]-W)^A*7)-
A,g[1]=(*M)[*g=M[T+=A ,1][x&1],x&1],(A^=1)&&(E(),J+=W);}l(){E(--q&&l
());}B(){*J&&B((D=*J,Q[2]<D&&D<k[1]&&(*g++=1), !(D-W&&D-9&&D-
10&&D-13)&&(!*r&&(*g++=0) ,* r=1)||64<D&&D<91&&(*r=0,*g++=D-
63)||D >= 97&&D<123&&(*r=0,*g++=D-95)||!(D-k[3]
)&&(*r=0,*g++=12)||D>k[3]&&D<=k[1] -1&&(*r=0,*g++=D-47),J++));}j(
){ putchar(A);}b(){(j(A=(*K)[D* W+ r[2]*Y+x]),++x<Y)&&b();}t ()
{(j((b(D=q[g],x=0),A=W)), ++q<(*(r+1)<Y?*(r+1): Y))&&t();}R(){(A=(t(q=
0),'\n'),j(),++r [2]<N)&&R();}O() {(j((r[2]=0,R())),r[1]-=q) && O(g-=-q) ;}
C(){(J= gets (K [1]))&&C((B(g=K[2]),*r=!(!*r&&(*g++=0)),(*r)[r]=g-
K[2],g=K[2],r[1]&& O()));;} main (){C ((l((J=(A=0) [K], A[M] =(F= (k=(
M[!A]=(Q =T+(q=(Y =(W= 32)- (N=4)))) +N)+ 2)+7)+7)),Y= N<<(*r=! -
A)));;}

Assertions

Don’t use assertions to check unusual
conditions

You need explicit error code for this

Only use them to ensure that illegal
conditions are avoided

Memory
The memcpy examples are from Writing Solid
Code: Microsoft's Techniques for Developing
Bug-Free C Programs
Although the book is general, lots of the
guidelines focus on memory issues

Marking freed memory
Not accessing freed memory
Dealing with details of realloc

These are real issues, but appear less
frequently in other languages

Writing solid code

Shred your garbage

Force early failure, increase determinism
Why 0xA3?

void FreeMemory(void *pv){

Assert(pv != NULL);

memset(pv, 0xA3, sizeofBlock(pv);

free(pv);
}

2

Should debug code be left in
shipped version

Pro:
Debug code useful for maintenance
Removing debug code change behavior

Bugs in release but not debug versions

Con:
Efficiency issues
Different behavior for debug vs. release

Early fail vs. recover

Step through your code

Maguire
Step through new code in the debugger
the first time it is used

Add code, set break points, run debugger
Add code, run tests, if failure, run debugger

Knuth
Developed tool to print out first two
executions of every line of code

Candy machine interfaces

Error prone return values or arguments

Classic bad example, getchar() returns an int!
Alternate approach

bool fGetChar(char pch);

Many bugs with malloc returning NULL

char c;

c = getchar();

If (c == EOF) …

Another coding quiz

char tolower(char ch){

}

Handling out of range inputs

Ignore
Return error code
Assert
Redefine the function to do something
reasonable
Write functions that, given valid inputs,
cannot fail

Debugging

What are the key steps in debugging a
program?

3

Kernigan and Pike's debugging
wisdom

Look for common patterns
Common bugs have distinct signatures

int n; scanf("%d", n);

Examine most recent change
Don't make the same mistake twice
Debug it now, not later
Get a stack trace
Read before typing

K & P, II

Explain your code to someone else
Make the bug reproducible
Divide and conquer

Find simplest failing case

Display output to localize your search
Debugging with printf()

Write self checking code
Keep records

My favorite bugs (and
stupidities)

BI280 Business Basic Interpreter written in C
for CP/M
Sporadic failure of parsing
Only happened when Basic program was
changed (after being loaded)
Parsing done by interpreter, each time a line
was executed
Adding printf's to code also changed behavior

The Bug

Uninitialized variable
Variable used by the parser to hold a
character that would be either a binary
operator or end of line
Parsing algorithm looked at last
character and tested if it was a binary
operator to continue parsing

Don't do this

Can cover up very bad things
Violates K&P: Debug it now, not later

try {

doSomething();

}

catch (Exception e){

}

Apocryphal (but still a good
story)

A program which fails only in the month
of September

4

Apocryphal (but still a good
story)

A program which fails only in the month
of September

char monthName[9];

strcpy(monthName, "September");

ConferenceXP

Video conferencing system would run
(after initial install) for about an hour
and then fail
System would not work at all at this
point
In a week it would start working again
(for an hour)
Repeated recovery every week

Solution

Install process
(erroneously) set
event log to
"overwrite events
older than 7 days
Application was very
verbose in logging
Failure when log
was full

