W Robust Coding and Debugging

CSE 403
Lecture 26

Summer reading

Don’t do this

= #include <stdio.h>

char *T=' Ie.]KLMaYQCE]]bZRskc[SIdU"V\\X\\V <[<:901\"$434-./2>]s",

K[3][1000] *F x,A,*M[2], *J r[4] 9.N,Y,*Q,W,*k,q,D; X(){r [r [r[3] M[1-

(x&l)] =W, 22] *Q+2,1]=; Y *Q+=(((x& 7) -1

1)?*rir x>>3] ++x<*r)&&XE) }E(){A||X x=0,9 =J x 7&(*T>>A*3) J[(X[F]-

W X)NA*T)= Q[x&3]"A*(*M) 2 +(x&1)], g—.]+ (x[k]-W,

AGI=(*M)*g=M[T+=A 1][x&1] x&1], (A"’l)&&(EOJ“' WHOLEC-g8&l

()):}B0{*I&&B((D=*J,Q[2]<D&&D<K[1]&&(*g++=1), |(D-W&&D-9&&

108&D 13)8&(I*1&&(*g++=0) ,* r=1 64<D&&D<91&&(*r—0 *g++=| D
63)| D >_ 97&&D<123&&(*r 0, *g++ D-95)||!(D-

)glputchar(A) }n() U)Jfl_ *K[)ED* W 1] [2 *]v+x]§‘(:ﬁ<o<*gggﬂ Y SRR
D=q[g] =W)), ++ +1)<Y7*(r+1) Y) &&t() }R(){(A—(t(=
() j0,++r [2 <N)&&R0 300 é(&((r[2]=0, f 1

C(){(3= gets (K [11)&&C((B(g=K[2]),*r '('*r&&(*)) =

K[g %‘K[Zlf[1]&& 0()2) i} main (){C ((ICQ= (A_O) 1K, ASM] (F - (k=(

=(Y =(W="32)- (N=4)))) +N)+ 2)+7)+7)),Y= N<<(*r=!

P
WRITING][he Practice of
SOLID mn]»] ;]]mmg
CODE o -
i .
Assertions

= Don't use assertions to check unusual
conditions

= You need explicit error code for this

= Only use them to ensure that illegal
conditions are avoided

Memory

= The memcpy examples are from Writing Solid
Code: Microsoft's Techniques for Developing
Bug-Free C Programs

= Although the book is general, lots of the
guidelines focus on memory issues
= Marking freed memory
= Not accessing freed memory
= Dealing with details of realloc

= These are real issues, but appear less
frequently in other languages

Writing solid code

= Shred your garbage

void FreeMemory(void *pv){
Assert(pv != NULL);
memset(pv, 0XA3, sizeofBlock(pv);
free(pv);

= Force early failure, increase determinism
= Why 0xA3?

Should debug code be left in

3 shipped version

= Pro:
= Debug code useful for maintenance
= Removing debug code change behavior
= Bugs in release but not debug versions
= Con:
= Efficiency issues

= Different behavior for debug vs. release
= Early fail vs. recover

3 Step through your code

= Maguire
= Step through new code in the debugger
the first time it is used
= Add code, set break points, run debugger
= Add code, run tests, if failure, run debugger
= Knuth

= Developed tool to print out first two
executions of every line of code

3 Candy machine interfaces

= Error prone return values or arguments
char c;
¢ = getchar();
If (c == EOF) ...
= Classic bad example, getchar() returns an int!

= Alternate approach
= bool fGetChar(char pch);

= Many bugs with malloc returning NULL

3 Another coding quiz

char tolower(char ch){

3 Handling out of range inputs

= Ignore
= Return error code
= Assert

= Redefine the function to do something
reasonable

= Write functions that, given valid inputs,
cannot fail

3 Debugging

= What are the key steps in debugging a
program?

Kernigan and Pike's debugging

3 wisdom

= Look for common patterns

= Common bugs have distinct signatures
= int n; scanf("%d", n);

= Examine most recent change

= Don't make the same mistake twice
= Debug it now, not later

= Get a stack trace

= Read before typing

K&P, Il

= Explain your code to someone else

= Make the bug reproducible

= Divide and conquer
= Find simplest failing case

= Display output to localize your search
= Debugging with printf()

= Write self checking code

= Keep records

My favorite bugs (and

3 stupidities)

= BI280 Business Basic Interpreter written in C
for CP/M

= Sporadic failure of parsing

= Only happened when Basic program was
changed (after being loaded)

= Parsing done by interpreter, each time a line
was executed

= Adding printf's to code also changed behavior

3 The Bug

= Uninitialized variable

= Variable used by the parser to hold a
character that would be either a binary
operator or end of line

= Parsing algorithm looked at last
character and tested if it was a binary
operator to continue parsing

3 Don't do this

try {
doSomething();

}
catch (Exception e){

}
= Can cover up very bad things
= Violates K&P: Debug it now, not later

Apocryphal (but still a good
story)

= A program which fails only in the month
of September

Apocryphal (but still a good

3 story) 3 ConferenceXP

= A program which fails only in the month = Video conferencing system would run
of September (after initial install) for about an hour
and then fail
= System would not work at all at this

char monthName[9];

point

= In a week it would start working again
(for an hour)

= Repeated recovery every week

strcpy(monthName, "September");

3 Solution

= Install process
(erroneously) set e TR
event log to -
"overwrite events o
older than 7 days

= Application was very
verbose in logging

= Failure when log
was full

