CSE403

! Lecture 25:

Refactoring

Valentin Razmov, CSE403, Sp'05

Motivational Examples
n What is common among the following?
(1) x = ((p<=1) ? (p?0:1) : (p==4)?2:(p+1));
(2) while (*a++ = *b++) ;

G)1+1/1+1/A+Q/1) +...=7?

Refactoring — What Is It?
n What is refactoring?

» Modifying code to improve its structure without
changing functionality

“the process of changing a software system in such
a way that it does not alter the external behavior of
the code yet improves its internal structure” (Fowler)

n What is the opposite of refactoring?

n Why might one want to do it?

‘_-‘ Refactoring — Why Do It?
» Why is it necessary?

» A long-term investment in the quality of the code and its
structure
» Without proper maintenance, code tends to "rot" as its structure
deteriorates when quick last-minute fixes are made and unplanned
features are added
n Doinghno refactoring may save on costs in the short term but
pays huge interest in the long run
» “Don't be penny-wise but hour-foolish!”

» Why fix it if it ain't broken? Every module has
three functions:
» (a) to execute according to its purpose;
» (b) to afford change;
» (c) to communicate to its readers.
It it doesn't do one or more of these, it's broken.

Refactoring — When to Do It?

n Refactoring is necessary from a business
standpoint too
» Helps with predictable schedules and high output at
lower cost

» ROI for improved software practices is 500% (!) or
better

» By doing refactoring a team saves on unplanned
defect-correction work

» When is refactoring necessary?

» Best done continuously, along with coding and
testing

» Very hard to do late, much like testing
» Often done before plunging into version 2

Types of Refactoring and

‘_-| Reasons for Doing It




‘_-’ Types of Refactoring

n Renaming (methods, variables)
» Naming (extracting) "magic" constants

n Extracting common functionality into a service / module /
class / method

n Extracting code into a method
» Changing method signatures

n Splittin% one method into several to improve cohesion and
readability (by reducing its size)

n Putting statements that semantically belong together near
each other

» Exchanging risky language idioms with safer alternatives

n Clarifying a statement (that has evolved over time or that is
hard to “decipher”)

» Performance optimization

Summary:
Top Reasons for Refactoring

n Improving readability (and hence productivity)
n Responding to a change in the spec/design by
improving cohesion
» Or anticipating such a change

n"If bug rates are to be reduced, each function needs to
have one well-defined purpose, to have explicit single-
purpose inputs and outputs, to be readable at the point
where it is called, and ideally never return an error
condiition.” Steve Maguire -- “Writing Solid Code”

Language Support for
Refactoring

» Modern development environments (e.g.,
Eclipse) support:

variable/method/class renaming

method or constant extraction

extraction of redundant code snippets

method signature change

extraction of an interface from a type

method inlining

providing warnings about method invocations with
inconsistent parameters

help with self-documenting code through auto-completion

» Older develoEment environments (e.g., vi,
Emacs, etc.) have little or no automated support
» Discourages programmers from refactoring their code

‘_-‘ Your Questions on Refactoring

Main Take-Away Points on

‘_-| Refactoring




