
1

A Bug’s life

Finding and Managing Bugs
CSE 403

Lecture 23

What is a bug?

� Formally, a “software defect”
� SUT fails to perform to spec
� SUT causes something else to fail
� SUT functions, but does not satisfy

usability criteria
� If the SUT works to spec and someone

wants it changed, that’s a feature
request

What are the contents of a
bug report?

� Repro steps – how did you cause the failure?
� Observed result – what did it do?
� Expected result – what should it have done?
� Any collateral information: return

values/output, debugger, etc.
� Environment

� Test platforms must be reproducible
� “It doesn’t do it on my machine”

What makes a good bug
report?

� Clear, descriptive title
� Accurate description of the problem
� Environment description
� Steps to reproduce the problem

� Ideally, a minimal set of steps

Ranking bugs

� Severity
� Sev 1: crash, hang,

data loss
� Sev 2: blocks

feature, no
workaround

� Sev 3: blocks
feature, workaround
available

� Sev 4: trivial (e.g.
cosmetic)

� Priority
� Pri 1: Fix

immediately
� Pri 2: Fix before next

release outside team
� Pri 3: Fix before ship
� Pri 4: Fix if nothing

better to do ☺

A Bug’s Life

2

Bug Triage

� Decide which bugs to fix
� Reasons NOT to fix bugs

� Ambiguous status of the bug
� Cost of fix vs. benefit to the product
� Risks that fixing it will cause other

problems
� Incorrect fix
� Other portions of the code depend on incorrect

behavior

Regression Testing

� Good: rerun the test that failed
� Or write a test for what you missed

� Better: rerun related tests (e.g.
component level)

� Best: rerun all product tests
� Automation can make this feasible!

Tracking Bugs

� Raw bug count
� Slope is useful predictor

� Ratio by ranking
� How bad are the bugs we’re finding?

� Find rate vs. fix rate
� One step forward, two back?

� Management choices
� Load balancing
� Review of development quality

When can I ship?

� Test coverage sufficient
� Bug slope, find vs. fix lead to

convergence
� Severity mix is primarily low-sev
� Priority mix is primarily low-pri

Milestones

� Feature complete
� All features are present

� Code complete
� Coding is done, except for the bugs

� Code Freeze
� No more coding

� Release Candidate
� I think it’s ready to ship

� It’s out the door

BUGs vs. Time

Feature
Complete

Code
Complete

Release
Candidate

Code
Freeze

3

Basic entomology
� Some facts about bugs (from Code Complete)

� The scope of most errors is limited
� 85% could be fixed by modifying a single routine

� Errors in assignment statements are common
� 41% of errors in assignment statements

� Most errors easy to fix
� 85% a few hours
� 14% a few hours to a few days
� 1% multiple days

� Old Microsoft Data (1992)
� 10 to 20 defects per 1000 lines of code in test
� 0.5 defects per 1000 lines of released code

Errors in testing

� Test cases can have errors too!
� Spending hours looking for bugs in code

that turn out to be in the test case
� Test cases more prone to errors than

the code
� Especially when the developer writes the

test case

When do you fix bugs?

� Write the code first, have someone else
fix the bugs

� Fix blocking bugs, but save the minor
stuff until code complete

� Aggressively fix bugs as they are found

