
1

Quality Assurance:
Test Development & Execution

CSE 403
Lecture 23

Slides derived from a
talk by Ian King

Test Specifications

� What questions do I want to answer about
this code? Think of this as experiment design

� In what dimensions will I ask these
questions?
� Functionality
� Security
� Reliability
� Performance
� Scalability
� Manageability

Test specification: example
� CreateFile method

� Should return valid, unique handle for
� initial ‘open’ for appropriate resource
� subsequent calls for shareable resource
� for files, should create file if it doesn’t exist

� Should return NULL handle and set error indicator if resource
is
� nonexistent device
� inappropriate for ‘open’ action
� in use and not shareable
� unavailable because of error condition (e.g. no disk space)

� Must recognize valid forms of resource name
� Filename, device, ?

Test Plans
� How will I ask my questions? Think of this as

the “Methods” section
� Understand domain and range
� Establish equivalence classes
� Address domain classes

� Valid cases
� Invalid cases
� Boundary conditions
� Error conditions
� Fault tolerance/stress/performance

Test plan: goals

� Enables development of tests
� Proof of testability – if you can’t design

it, you can’t do it
� Review: what did you miss?

Test plan: example
� CreateFile method

� Valid cases
� execute for each resource supporting ‘open’ action

� opening existing device
� opening existing file
� opening (creating) nonexistent file

� execute for each such resource that supports sharing
� multiple method calls in separate threads/processes
� multiple method calls in single thread/process

� Invalid cases
� nonexistent device
� file path does not exist
� in use and not shareable

� Error cases
� insufficient disk space
� invalid form of name
� permissions violation

� Boundary cases
� e.g. execute to/past system limit on open device handles
� device name at/past name length limit (MAXPATH)

� Fault tolerance
� execute on failed/corrupted filesystem
� execute on failed but present device

2

Performance testing

� Test for performance behavior
� Does it meet requirements?

� Customer requirements
� Definitional requirements (e.g. Ethernet)

� Test for resource utilization
� Understand resource requirements

� Test performance early
� Avoid costly redesign to meet performance

requirements

Security Testing

� Is data/access safe from those who should
not have it?

� Is data/access available to those who should
have it?

� How is privilege granted/revoked?
� Is the system safe from unauthorized control?

� Example: denial of service
� Collateral data that compromises security

� Example: network topology

Stress testing

� Working stress: sustained operation at
or near maximum capability

� Goal: resource leak detection
� Breaking stress: operation beyond

expected maximum capability
� Goal: understand failure scenario(s)

� “Failing safe” vs. unrecoverable failure or
data loss

Globalization

� Localization
� UI in the customer’s language
� German overruns the buffers
� Japanese tests extended character sets

� Globalization
� Data in the customer’s language
� Non-US values ($ vs. Euro, ips vs. cgs)
� Mars Global Surveyor: mixed metric and

SAE

Test Cases

� Actual “how to” for individual tests
� Expected results
� One level deeper than the Test Plan
� Automated or manual?
� Environmental/platform variables

Test case: example

� CreateFile method
� Valid cases

� English
� open existing disk file with arbitrary name and full path,

file permissions allowing access
� create directory ‘c:\foo’
� copy file ‘bar’ to directory ‘c:\foo’ from test server;

permissions are ‘Everyone: full access’
� execute CreateFile(‘c:foo\bar’, etc.)
� expected: non-null handle returned

3

Test Harness/Architecture

� Test automation is nearly always worth
the time and expense

� How to automate?
� Commercial harnesses
� Roll-your-own
� Record/replay tools
� Scripted harness

� Logging/Evaluation

Test Schedule
� Phases of testing

� Unit testing (may be done by developers)
� Component testing
� Integration testing
� System testing

� Dependencies – when are features ready?
� Use of stubs and harnesses

� When are tests ready?
� Automation requires lead time

� The long pole – how long does a test pass take?

Where The Wild Things Are:
Challenges and Pitfalls

� “Everyone knows” – hallway design
� “We won’t know until we get there”
� “I don’t have time to write docs”
� Feature creep/design “bugs”
� Dependency on external groups

Test Schedule

� Phases of testing
� Unit testing (may be done by developers)
� Component testing
� Integration testing
� System testing
� Usability testing

What makes a good tester?

� Analytical
� Ask the right questions
� Develop experiments to get answers

� Methodical
� Follow experimental procedures precisely
� Document observed behaviors, their

precursors and environment
� Brutally honest

� You can’t argue with the data

How do test engineers fail?

� Desire to “make it work”
� Impartial judge, not “handyman”

� Trust in opinion or expertise
� Trust no one – the truth (data) is in there

� Failure to follow defined test procedure
� How did we get here?

� Failure to document the data
� Failure to believe the data

4

Testability
� Can all of the feature’s code paths be exercised

through APIs, events/messages, etc.?
� Unreachable internal states

� Can the feature’s behavior be programmatically
verified?

� Is the feature too complex to test?
� Consider configurations, locales, etc.

� Can the feature be tested timely with available
resources?
� Long test latency = late discovery of faults

What color is your box?

� Black box testing
� Treats the SUT as atomic
� Study the gazinta’s and gozouta’s
� Best simulates the customer experience

� White box testing
� Examine the SUT internals
� Trace data flow directly (in the debugger)
� Bug report contains more detail on source of

defect
� May obscure timing problems (race conditions)

Designing Good Tests

� Well-defined inputs and outputs
� Consider environment as inputs
� Consider ‘side effects’ as outputs

� Clearly defined initial conditions
� Clearly described expected behavior
� Specific – small granularity provides greater

precision in analysis
� Test must be at least as verifiable as SUT

Types of Test Cases
� Valid cases

� What should work?
� Invalid cases

� Ariane V – data conversion error
(http://www.cs.york.ac.uk/hise/safety-critical-
archive/1996/0055.html)

� Boundary conditions
� Fails in September?
� Null input

� Error conditions
� Distinct from invalid input

Manual Testing

� Definition: test that requires direct human
intervention with SUT

� Necessary when:
� GUI is present
� Behavior is premised on physical activity (e.g. card

insertion)

� Advisable when:
� Automation is more complex than SUT
� SUT is changing rapidly (early development)

Automated Testing

� Good: replaces manual testing
� Better: performs tests difficult for manual

testing (e.g. timing related issues)
� Best: enables other types of testing

(regression, perf, stress, lifetime)
� Risks:

� Time investment to write automated tests
� Tests may need to change when features change

5

Types of Automation Tools:
Record/Playback

� Record “proper” run through test procedure
(inputs and outputs)

� Play back inputs, compare outputs with
recorded values

� Advantage: requires little expertise
� Disadvantage: little flexibility - easily

invalidated by product change
� Disadvantage: update requires manual

involvement

Types of Automation Tools:
Scripted Record/Playback

� Fundamentally same as simple
record/playback

� Record of inputs/outputs during manual test
input is converted to script

� Advantage: existing tests can be maintained
as programs

� Disadvantage: requires more expertise
� Disadvantage: fundamental changes can

ripple through MANY scripts

Types of Automation Tools:
Script Harness

� Tests are programmed as modules,
then run by harness

� Harness provides control and reporting
� Advantage: tests can be very flexible
� Disadvantage: requires considerable

expertise and abstract process

Test Corpus

� Body of data that generates known
results

� Can be obtained from
� Real world – demonstrates customer

experience
� Test generator – more deterministic

� Caveats
� Bias in data generation
� Don’t share test corpus with developers!

Instrumented Code:
Test Hooks

� Code that enables non-invasive testing
� Code remains in shipping product
� May be enabled through

� Special API
� Special argument or argument value
� Registry value or environment variable

� Example: Windows CE IOCTLs
� Risk: silly customers….

Instrumented Code:
Diagnostic Compilers

� Creates ‘instrumented’ SUT for testing
� Profiling – where does the time go?
� Code coverage – what code was touched?

� Really evaluates testing, NOT code quality
� Syntax/coding style – discover bad coding

� lint, the original syntax checker
� Complexity

� Very esoteric, often disputed (religiously)
� Example: function point counting

6

Instrumented platforms

� Example: App Verifier
� Supports ‘shims’ to instrument standard

system calls such as memory allocation
� Tracks all activity, reports errors such as

unreclaimed allocations, multiple frees, use
of freed memory, etc.

� Win32 includes ‘hooks’ for platform
instrumentation

Environment Management
Tools

� Predictably simulate real-world
situations

� MemHog
� DiskHog
� Data Channel Simulator

Test Monkeys

� Generate random input, watch for crash
or hang

� Typically, ‘hooks’ UI through message
queue

� Primarily to catch “local minima” in
state space (logic “dead ends”)

� Useless unless state at time of failure is
well preserved!

Finding and Managing Bugs

What is a bug?

� Formally, a “software defect”
� SUT fails to perform to spec
� SUT causes something else to fail
� SUT functions, but does not satisfy

usability criteria
� If the SUT works to spec and someone

wants it changed, that’s a feature
request

What are the contents of a
bug report?

� Repro steps – how did you cause the failure?
� Observed result – what did it do?
� Expected result – what should it have done?
� Any collateral information: return

values/output, debugger, etc.
� Environment

� Test platforms must be reproducible
� “It doesn’t do it on my machine”

7

Ranking bugs

� Severity
� Sev 1: crash, hang,

data loss
� Sev 2: blocks

feature, no
workaround

� Sev 3: blocks
feature, workaround
available

� Sev 4: trivial (e.g.
cosmetic)

� Priority
� Pri 1: Fix

immediately
� Pri 2: Fix before next

release outside team
� Pri 3: Fix before ship
� Pri 4: Fix if nothing

better to do ☺

A Bug’s Life

Regression Testing

� Good: rerun the test that failed
� Or write a test for what you missed

� Better: rerun related tests (e.g.
component level)

� Best: rerun all product tests
� Automation can make this feasible!

Tracking Bugs

� Raw bug count
� Slope is useful predictor

� Ratio by ranking
� How bad are the bugs we’re finding?

� Find rate vs. fix rate
� One step forward, two back?

� Management choices
� Load balancing
� Review of development quality

When can I ship?

� Test coverage sufficient
� Bug slope, find vs. fix lead to

convergence
� Severity mix is primarily low-sev
� Priority mix is primarily low-pri

Milestones

� Feature complete
� All features are present

� Code complete
� Coding is done, except for the bugs

� Code Freeze
� No more coding

� Release Candidate
� I think it’s ready to ship

� It’s out the door

8

BUGs vs. Time

Feature
Complete

Code
Complete

Release
Candidate

Code
Freeze

