
1

Quality Assurance and Testing

CSE 403
Lecture 22

Slides derived from a
talk by Ian King

Key Points

Many different characteristics of quality
Importance of having independent
quality assurance from development
The deliverable of QA is information
Write it down
QA is not free

QA ‘Good Practices’ Build Process

Source control
Undo the ‘oops

Centralized build
Be sure everyone is testing the same bits
Avoid platform dependencies
How often are new builds generated?

Periodic
Event-Driven

Configuration management

Developer Practice

Buddy builds
Code review
Code analysis tools
Unit testing

Defect Process

Why are defects tracked?
How are defects tracked?
What is the lifecycle of a bug?
How are defects prioritized?
Controlled check-ins/triage process
Defect analysis:

Defect source analysis
Root cause analysis

2

Measuring quality

Is it possible to quantify software
quality?

Costs of quality assurance

Programmer Productivity
8-20 LOC / day

Building QA into the schedule

Quality Assurance:
Test Development & Execution

Slides derived from a
talk by Ian King

Developing Test Strategy

Elements of Test Strategy

Test specification
Test plan
Test harness/architecture
Test case generation
Test schedule

Where is your focus?

The customer
The customer
The customer
The customer
The customer
The customer
The customer
Schedule and budget

Requirements feed into test
design

What factors are important to the
customer?

Reliability vs. security
Reliability vs. performance
Features vs. reliability
Cost vs. ?

What are the customer’s expectations?
How will the customer use the
software?

3

Test Specifications

What questions do I want to answer about
this code? Think of this as experiment design
In what dimensions will I ask these
questions?

Functionality
Security
Reliability
Performance
Scalability
Manageability

Test specification: example
CreateFile method

Should return valid, unique handle for
initial ‘open’ for appropriate resource
subsequent calls for shareable resource
for files, should create file if it doesn’t exist

Should return NULL handle and set error indicator
if resource is

nonexistent device
inappropriate for ‘open’ action
in use and not shareable
unavailable because of error condition (e.g. no disk
space)

Must recognize valid forms of resource name
Filename, device, ?

Test Plans

How will I ask my questions? Think of this as
the “Methods” section
Understand domain and range
Establish equivalence classes
Address domain classes

Valid cases
Invalid cases
Boundary conditions
Error conditions
Fault tolerance/stress/performance

Test plan: goals

Enables development of tests
Proof of testability – if you can’t design
it, you can’t do it
Review: what did you miss?

Test plan: example
CreateFile method

Valid cases
execute for each resource supporting ‘open’ action

opening existing device
opening existing file
opening (creating) nonexistent file

execute for each such resource that supports sharing
multiple method calls in separate threads/processes
multiple method calls in single thread/process

Invalid cases
nonexistent device
file path does not exist
in use and not shareable

Error cases
insufficient disk space
invalid form of name
permissions violation

Boundary cases
e.g. execute to/past system limit on open device handles
device name at/past name length limit (MAXPATH)

Fault tolerance
execute on failed/corrupted filesystem
execute on failed but present device

Performance testing

Test for performance behavior
Does it meet requirements?

Customer requirements
Definitional requirements (e.g. Ethernet)

Test for resource utilization
Understand resource requirements

Test performance early
Avoid costly redesign to meet performance
requirements

4

Security Testing

Is data/access safe from those who should
not have it?
Is data/access available to those who should
have it?
How is privilege granted/revoked?
Is the system safe from unauthorized control?

Example: denial of service
Collateral data that compromises security

Example: network topology

Stress testing

Working stress: sustained operation at
or near maximum capability
Goal: resource leak detection
Breaking stress: operation beyond
expected maximum capability
Goal: understand failure scenario(s)

“Failing safe” vs. unrecoverable failure or
data loss

Globalization

Localization
UI in the customer’s language
German overruns the buffers
Japanese tests extended character sets

Globalization
Data in the customer’s language
Non-US values ($ vs. Euro, ips vs. cgs)
Mars Global Surveyor: mixed metric and
SAE

Test Cases

Actual “how to” for individual tests
Expected results
One level deeper than the Test Plan
Automated or manual?
Environmental/platform variables

Test case: example

CreateFile method
Valid cases

English
open existing disk file with arbitrary name and full path,
file permissions allowing access

create directory ‘c:\foo’
copy file ‘bar’ to directory ‘c:\foo’ from test server;
permissions are ‘Everyone: full access’
execute CreateFile(‘c:foo\bar’, etc.)
expected: non-null handle returned

Test Harness/Architecture

Test automation is nearly always worth
the time and expense
How to automate?

Commercial harnesses
Roll-your-own
Record/replay tools
Scripted harness

Logging/Evaluation

5

Test Schedule
Phases of testing

Unit testing (may be done by developers)
Component testing
Integration testing
System testing

Dependencies – when are features ready?
Use of stubs and harnesses

When are tests ready?
Automation requires lead time

The long pole – how long does a test pass take?

Where The Wild Things Are:
Challenges and Pitfalls

“Everyone knows” – hallway design
“We won’t know until we get there”
“I don’t have time to write docs”
Feature creep/design “bugs”
Dependency on external groups

