* Quality Assurance and Testing

CSE 403
Lecture 22

Slides derived from a
talk by lan King

3 Key Points

= Many different characteristics of quality

= Importance of having independent
quality assurance from development

= The deliverable of QA is information
= Write it down
= QA is not free

3 QA ‘Good Practices’

3 Build Process

= Source control
= Undo the ‘oops

= Centralized build
= Be sure everyone is testing the same bits
= Avoid platform dependencies

= How often are new builds generated?
= Periodic
= Event-Driven

= Configuration management

3 Developer Practice

= Buddy builds

= Code review

= Code analysis tools
= Unit testing

3 Defect Process

= Why are defects tracked?

= How are defects tracked?

= What is the lifecycle of a bug?

= How are defects prioritized?

= Controlled check-ins/triage process

= Defect analysis:
= Defect source analysis
= Root cause analysis




3 Measuring quality

= Is it possible to quantify software
quality?

3 Costs of quality assurance

= Programmer Productivity
= 8-20 LOC / day
= Building QA into the schedule

Quality Assurance:
Test Development & Execution

Developing Test Strategy

Slides derived from a
talk by lan King

3 Elements of Test Strategy

= Test specification

= Test plan

= Test harness/architecture
= Test case generation

= Test schedule

3 Where is your focus?

= The customer
= The customer
= The customer
= The customer
= The customer
= The customer
= The customer
= Schedule and budget

Requirements feed into test

3 design

= What factors are important to the
customer?
= Reliability vs. security
= Reliability vs. performance
= Features vs. reliability
= Costvs. ?
= What are the customer’s expectations?

= How will the customer use the
software?




3 Test Specifications

= What questions do | want to answer about
this code? Think of this as experiment design
= In what dimensions will | ask these
questions?
= Functionality
= Security
= Reliability
= Performance
= Scalability
= Manageability

Test specification: example

= CreateFile method
= Should return valid, unique handle for
= initial ‘open’ for appropriate resource
= subsequent calls for shareable resource
« for files, should create file if it doesn't exist
= Should return NULL handle and set error indicator
if resource is
= nonexistent device
inappropriate for ‘open’ action
in use and not shareable
unavailable because of error condition (e.g. no disk
space)
= Must recognize valid forms of resource name
= Filename, device, ?

3 Test Plans

= How will I ask my questions? Think of this as
the “Methods” section

= Understand domain and range
= Establish equivalence classes
= Address domain classes

= Valid cases

= Invalid cases

= Boundary conditions

= Error conditions

= Fault tolerance/stress/performance

3 Test plan: goals

= Enables development of tests

= Proof of testability — if you can’t design
it, you can't do it

= Review: what did you miss?

Test plan: example

= CreateFile method

Valid cases

. execute for each resource supporting ‘open’ action
opening existing device
opening existing file
apening (creating) nonexistent fle

- execute for each such resource that supports sharing
multiple method callsin separate threads/processes
multiple method calls in single thread/process

Invalid cases

- nonexistent device

. file path does not exist

- inuse and not shareable

Error cases

. insufficient disk space

- invalid form of name

- permissions violation

Boundary cases

. e.g. execute to/past system limit on open device handles

- device name at/past name length limit (MAXPATH)

Fault tolerance

- execute on failed/corrupted filesystem

. execute on failed but present device

3 Performance testing

= Test for performance behavior

= Does it meet requirements?
= Customer requirements
= Definitional requirements (e.g. Ethernet)

= Test for resource utilization
= Understand resource requirements
= Test performance early

= Avoid costly redesign to meet performance
requirements




3 Security Testing

= Is data/access safe from those who should
not have it?

= |s data/access available to those who should
have it?

= How is privilege granted/revoked?

= Is the system safe from unauthorized control?
= Example: denial of service

= Collateral data that compromises security
= Example: network topology

5 Stress testing

= Working stress: sustained operation at
or near maximum capability

= Goal: resource leak detection

= Breaking stress: operation beyond
expected maximum capability

= Goal: understand failure scenario(s)

= “Failing safe” vs. unrecoverable failure or
data loss

g Globalization

= Localization

= Ul in the customer’s language

= German overruns the buffers

= Japanese tests extended character sets
= Globalization

= Data in the customer’s language

= Non-US values ($ vs. Euro, ips vs. cgs)

= Mars Global Surveyor: mixed metric and
SAE

g Test Cases

= Actual “how to” for individual tests
= Expected results

= One level deeper than the Test Plan
= Automated or manual?

= Environmental/platform variables

5 Test case: example

= CreateFile method

= Valid cases
= English
open existing disk file with arbitrary name and full path,
file permissions allowing access
create directory ‘c:\foo’

copy file ‘bar’ to directory ‘c:\foo’ from test server;
permissions are ‘Everyone: full access’

execute CreateFile(‘c:foo\bar’, etc.)
expected: non-null handle returned

5 Test Harness/Architecture

= Test automation is nearly always worth
the time and expense
= How to automate?
= Commercial harnesses
= Roll-your-own
= Record/replay tools
= Scripted harness
= Logging/Evaluation




3 Test Schedule

= Phases of testing
= Unit testing (may be done by developers)
= Component testing
= Integration testing
= System testing
= Dependencies — when are features ready?
= Use of stubs and harnesses
= When are tests ready?
= Automation requires lead time
= The long pole — how long does a test pass take?

Where The Wild Things Are:

3 Challenges and Pitfalls

= “Everyone knows” — hallway design
= “We won't know until we get there”
= “l don't have time to write docs”

= Feature creep/design “bugs”

= Dependency on external groups




