! Families of Software Systems

Notkin: 3 of 3 lectures on change

‘_-‘ Families of software systems

» What are the benefits of considering
families of systems during software
design?

n Why is the design you get for a system
this way different from those achieved
through other approaches?

n What is layering? What is the uses
relation

‘_-’ Families of systems

n Itis quite common for there to be many
related versions of a software system
» True even omitting new versions intended “just”
for adding features and fixing bugs
n Parnas makes the analogy to families of
hardware systems
» The IBM 360 family is a great example

» One instruction set, many many implementations

» One goal was to meet distinct price-performance needs;
another was to handle upgrading

‘_-‘ Software examples

» Windows NT, Windows 98, Windows
2000

n Local language versions of desktop
packages

n Federal vs. state versions of TurboTax
n Different Unix versions
» A bazillion others

‘_-| Common approach ...

n ... to developing
members in a

family of systems

Design and build Cinplemenaion

the first member

Modlfy the first (Verson3 Crarana®@) (Verant8 (@)
member to make

B

(Version2 (variant A (v))—(_ VariantB (v1))

>

the next member
» And so on

‘_-| Basic problem

n The basic problem is that this is reactive
design
» The design one gets for a later member of
the family is based not on the best design,
but on the history that led to it

» Ontogeny recapitulates Phylogeny
n Parnas argues that there are significant

benefits to anticipating the family in
advance

‘_-’ Premise

n There are collections of software systems in
which one benefits enormously from
understanding their commonalities before
focusing on their differences
» These are program families

n One should explicitly design with this idea in
mind
» Then the design will explicitly account for the

family, leading to better designs

‘_-‘ Note

n In neither approach will the design for a
later member of the family be the same
as if it were designed on its own
» In the evolutionary approach, this is

because it's derived from earlier designs
» In the family approach, this is because it's
designed as part of a family

n This is a tradeoff that is likely to have
benefits in the long-term

Stepwise refinement:
a limited kind of family approach

n This is the top-down style of program design

» Take your high-level task, decompose it into parts,
assuming you can implement each part

» Then successive apply this technique to each of
those parts, until you have a complete program
n Each of the parts that is not fully
implemented represents a kind of family

‘_-‘ Example: sorting

while Ox,yO[1..NOAX] < Ay] do
swap(A[x], ALy])
end

n You can think of this as capturing the entire
family of exchange sorts
» Bubble sort, insertion sort, shell sort, quicksort,
etc.
» The decisions about the order of indices to
compare distinguishes the family members

‘_-| Stepwise refinement

n Stepwise refinement can reasonably be viewed as
a design technique for representing families of
systems

n But the top-down nature of the approach yields
serious practical limitations

n In particular, one has to replay decisions from
whatever node in the design tree is chosen, all
the way down

» In small examples, small deal; in big systems, big deal;
in really big systems, really big deal

‘_-| Parnas’ explicit approach

n Anticipate family members and build
information hiding modules that support
the implementation of those family
members

n Doesn't require replay of all decisions
from top to bottom

» Mix-and-match implementations while
keeping interfaces stable

‘_-’ Layering

n A focus on information hiding modules isn't
enough

n Parnas’ also focuses on layers of abstract
machines as a way to design families of
systems
» Another view is to design in a way that easily

enables the building of supersets (extensions) and
subsets (contractions)

» These are equally important directions to be able
to move in software — examples?

‘_-‘ Examples

. n THE
n In a strict layered [Dijkstra 1960’s operating
design, a level can only system]
use the immediately o Level 5: User Programs
lower level . Level 4: Buffering for I/O
» Levels often promote devices
operations through to the » Level 3: Operator Console
next level Device Driver
» In the strictest view, o Level 2: Memory
recursion would be Management
prohibited o Level 1: CPU Scheduling

n Other examples of
layered systems?

Level 0: Hardware

The uses relation

n Parnas says to layer using the uses
relation
~ A program A uses a program B if the
correctness of A depends on the presence
of a correct version of B
n Requires A’s specification and
implementation and B's specification

n What's the specification? Signature?
Implied or informal semantics?

‘ uses vs. i nvokes

n These relations often but do not always coincide

» Invocation without use: name service with cached

hints
i pAddr : = cache(host Nane) ;

if not(ping(ipAddr))
i pAddr : = | ookup(host Nane)
endi f

n Use without invocation: examples?

‘_-| Parnas’ observation

n A non-hierarchical uses relation makes
it difficult to produce useful subsets of a
system
» That is, loops in the uses relation (A uses

B and B uses A, directly or indirectly)
cause problems
» It also makes testing difficult

n S0, it is important to design the uses

relation

‘_-| Criteria for uses(A, B)

n Ais essentially simpler because it uses
B

n B is not substantially more complex
because it does not use A

n There is a useful subset containing B
but not A

n There is no useful subset containing A
but not B

‘_-’ Note again...

n ...Parnas’ focus on criteria to help you
design

‘_-‘ Modules and layers interact?

» Information

hiding
modules and Segment Mgt
layers are

dIStInCt Process Mgmt.

concepts Process ADT

» How and
where do
they overlap
in a system? e

Segment Creation

Language support

n We have lots of language support for
information hiding modules
» C++ classes, Java interfaces, etc.

n We have essentially no language support for
layering
» Operating systems provide support, primarily for

reasons of protection, not abstraction

» Big performance cost to pay for “just” abstraction

Final words

Design for change isn't easy

Information hiding and layering are two
principles to remember

There are others, such as separation of
concerns

There are lots of other issues/techniques
intended to address change proactively

» Open implementation

» Aspect-oriented design/programming

no.

>

B

>

B

‘_-| Final final words!

n Change in software is a huge issue

n Paying attention to it — even though it's
a future benefit more than an
immediate one — can produce genuine
value

