CSE 403: Notkin
! #2 of 3 on software change

Information Hiding

‘_-‘ Today’s educational objective

» Understand information hiding as a
principle for decomposing systems into
modules

‘_-’ Background

n "I assume the programmer’s genius
matches the difficulty of his problem
and assume that he has a arrived at a
suitable subdivision of the task.” —Dijkstra
“Usually nothing is said about the
criteria to be used in dividing the
system into modules.” —parnas

=]

Information hiding principle

» A fundamental cost in software engineering is
accommodating change

n A change that requires modifying multiple
modules is more costly than a change that is
isolated in a single module

n Therefore
» Anticipate likely changes

» Define interfaces that capture the stable aspects and
implementations that capture the changeable aspects

‘_-| Small examples

. type intSet is
n double sgrt (int) intSet create();

» Can be implemented insert(intSet,int);
: . : del ete(intSet,int);
using bisection h )
. bool nenber(intSet,int);
methods, factorlng int size(intSet):
methods, Newton’s end intSet:

method
» The client doesn’t e Classic example of data
care, and this can abstraction
change (requiring ¢ The representation and
only relinking) algorithms are hidden
« Very low level example, ¢ They can change without

of course affecting clients

‘_-| Hiding secrets

n These two examples show specific kinds of
secrets that modules hide
» Algorithms
» Data representations

n The interfaces capture stable decisions
» Clients depend on these interfaces

» The implementations encode the changeable
parts
» Clients do not depend on these




Client A Client B Client C Client D

Invokes Jnterface J J J

interface: signature and specification

Public &
Stable

Private &
Changeable

implementation

‘_-‘ Interface

» An interface has two parts

» The signature: the names and type information
about the exported functions

n The specification: a precise description of the
semantics of the elements in the module
n Most commonly, the signature is in a
programming language and the specification
is in natural language

n But you cannot neglect the specification

Example
n double sqrt (int n double sgrt (int x)
x) |
a legitinate return 3.14159;
different }
i npl enent ati on
} » bool menmber

(intSet s,int i) {
return 1sQdd(i)

The contract with
the client includes
semantic information

‘_-‘ Design Level

» Information hiding is a design principle,
not a coding principle

n Obviously, it can be reflected in code
that is based on the design

‘_-| Anticipating change

n It's “easy” to anticipate algorithmic and
representational changes
n But you cannot and should not do this and
only this
» By blithely anticipating these changes, you may
not think about another kind of change that is
more likely and potentially costly
n In general, you cannot build a design that
effectively anticipates all changes

‘_-| Data isn’t always abstracted

n Unix byte streams are pervasive

» imagine trying to change Unix’s data model
from byte streams to fixed width records

» good or bad decision?
n y2k problems arose because a date
representation was exposed
» The USPS, the DJIA and McDonald’s have
also faced similar problems
n Other examples?




‘_-’ Other kinds of secrets

n An information hiding module can hide
other secrets
» Characteristics of a hardware device
» Ex: whether an on-line thermometer measures
in Fahrenheit or Centigrade
» Where information is acquired

» Ex: the Metacrawler (wwv. met acr awl er . com)
might hide what other web search engines it
uses

» Other examples?

KWIC: the classic example
Output

Input

P . . n aidto come to the

v nowis the tine all good students for
for all good students come to the aid to
to conme to the aid for all good students

of their professors good students for all
is the tine now
now is the tine
of their professors
prof essors of their
students for all good
the aid to come to
the time nowis
their professors of
time nowis the
to come to the aid
to the aid to come

‘_-’ The classic decomposition
n Top-down
functional

decomposition

» Stepwise ‘ fnput %"{ Poan %"{ Output

refinement
n Based on the
steps the actual
computation will

Circular "
Alphabetize

>
ta ke Calls Sequence >

‘_-‘ The data decomposition

Master
Control

» Not based on the actual
computation steps

» Hides decisions about
data representation

» Could they be hidden in the
previous decomposition?

n Hides decisions about
the granularity of
sorting

n The “sequence”
relationship is hazier

Alphabetize

Circular
Shifter

Line
Storage

Fundamentally different

‘_-| approaches

n These are really different designs

n They are equivalent in terms of the
actual user experience
» Indeed, Parnas argued that in principle a
compiler could produce identical
executables from these two different
decompositions

‘_-| What about performance?




