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Information Hiding

‘_-‘ Today’s educational objective

» Understand information hiding as a
principle for decomposing systems into
modules

‘_-’ Background

n "I assume the programmer’s genius
matches the difficulty of his problem
and assume that he has a arrived at a
suitable subdivision of the task.” —Dijkstra
“Usually nothing is said about the
criteria to be used in dividing the
system into modules.” —parnas
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Information hiding principle

» A fundamental cost in software engineering is
accommodating change

n A change that requires modifying multiple
modules is more costly than a change that is
isolated in a single module

n Therefore
» Anticipate likely changes

» Define interfaces that capture the stable aspects and
implementations that capture the changeable aspects

‘_-| Small examples

. type intSet is
n double sgrt (int) intSet create();

» Can be implemented insert(intSet,int);
: . : del ete(intSet,int);
using bisection h )
. bool nenber(intSet,int);
methods, factorlng int size(intSet):
methods, Newton’s end intSet:

method
» The client doesn’t e Classic example of data
care, and this can abstraction
change (requiring ¢ The representation and
only relinking) algorithms are hidden
« Very low level example, ¢ They can change without

of course affecting clients

‘_-| Hiding secrets

n These two examples show specific kinds of
secrets that modules hide
» Algorithms
» Data representations

n The interfaces capture stable decisions
» Clients depend on these interfaces

» The implementations encode the changeable
parts
» Clients do not depend on these
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‘_-‘ Interface

» An interface has two parts

» The signature: the names and type information
about the exported functions

n The specification: a precise description of the
semantics of the elements in the module
n Most commonly, the signature is in a
programming language and the specification
is in natural language

n But you cannot neglect the specification

Example
n double sqrt (int n double sgrt (int x)
x) |
a legitinate return 3.14159;
different }
i npl enent ati on
} » bool menmber

(intSet s,int i) {
return 1sQdd(i)

The contract with
the client includes
semantic information

‘_-‘ Design Level

» Information hiding is a design principle,
not a coding principle

n Obviously, it can be reflected in code
that is based on the design

‘_-| Anticipating change

n It's “easy” to anticipate algorithmic and
representational changes
n But you cannot and should not do this and
only this
» By blithely anticipating these changes, you may
not think about another kind of change that is
more likely and potentially costly
n In general, you cannot build a design that
effectively anticipates all changes

‘_-| Data isn’t always abstracted

n Unix byte streams are pervasive

» imagine trying to change Unix’s data model
from byte streams to fixed width records

» good or bad decision?
n y2k problems arose because a date
representation was exposed
» The USPS, the DJIA and McDonald’s have
also faced similar problems
n Other examples?




‘_-’ Other kinds of secrets

n An information hiding module can hide
other secrets
» Characteristics of a hardware device
» Ex: whether an on-line thermometer measures
in Fahrenheit or Centigrade
» Where information is acquired

» Ex: the Metacrawler (wwv. met acr awl er . com)
might hide what other web search engines it
uses

» Other examples?
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‘_-’ The classic decomposition
n Top-down
functional

decomposition

» Stepwise ‘ fnput %"{ Poan %"{ Output

refinement
n Based on the
steps the actual
computation will

Circular "
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>
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‘_-‘ The data decomposition

Master
Control

» Not based on the actual
computation steps

» Hides decisions about
data representation

» Could they be hidden in the
previous decomposition?

n Hides decisions about
the granularity of
sorting

n The “sequence”
relationship is hazier

Alphabetize

Circular
Shifter

Line
Storage

Fundamentally different

‘_-| approaches

n These are really different designs

n They are equivalent in terms of the
actual user experience
» Indeed, Parnas argued that in principle a
compiler could produce identical
executables from these two different
decompositions

‘_-| What about performance?




