M Design for Change

Notkin: 1 of 3 lectures on change

Today: high-level view
Next Wednesday/Friday: more nuts and bolts

Why design software for

‘_-‘ change?

» We don't design pencils for change

n We don't design houses for change

n We don't design automobiles for change
n We don't design ... for change

What do you think of when you think

‘_-’ about software and change?

‘_-‘ Software evolution

n Software changes

n The objective is to use an existing code base
as an asset (although it's often viewed as a
liability)

» Cheaper and better to get there from here, rather
than starting from scratch

» Anyway, where would you aim for with a new
system?

‘_-| A legacy

n Merriam-Webster on-line dictionary

 “a gift by will especially of money or other
personal property”

» “something transmitted by or received from an
ancestor or predecessor or from the past”
n The usual joke is that in anything but
software, you'd love to receive a legacy

» Maybe we feel the same way about inheritance,
too, especially multiple inheritance

Change

n “There is in the worst of fortune the best of
chances for a happy change” —Euripides
“The ruling power within, when it is in its
natural state, is so related to outer
circumstances that it easily changes to accord
with what can be done and what is given it to
do” —Marcus Aurelius

n “Change in all things is sweet” —Aristotle

B

Zen master says to the hot
i dog vendor

"Make me one with “Here’s your hot dog.”
everything. Here’s $20.”

“Where's my change?” “Change comes from within.”

i Why does it change?

n Software changes does not change primarily because
it doesn’t work right
» Maintenance in software is different than maintenance for
automobiles
» But rather because the technological, economic, and
societal environment in which it is embedded
changes
n This provides a feedback loop to the software
» The software is usually the most malleable link in the chain,
hence it tends to change
» Counterexample: Space shuttle astronauts have thousands of
extra responsibilities because it's safer than changing code

* Kinds of change

n Corrective maintenance

» Fixing bugs in released
code

» Adaptive maintenance
» Porting to new hardware
or software platform

n Perfective maintenance
» Providing new functions

» Old data, focused on IT
systems...now?

High cost, long time

nGold’s 1973 study
showed the fraction
of programming
effort spent in
maintenance

nFor example, 22% of
the organizations
spent 30% of their
effort in maintenance

»Old data

* Total life cycle cost

n» Lientz and Swanson determined that at
least 50% of the total life cycle cost is
in maintenance

n There are several other studies that are
reasonably consistent

» General belief is that maintenance
accounts for somewhere between 50-
75% of total life cycle costs

* Open question

n How much maintenance cost is “reasonable?”
» Corrective maintenance costs are ostensibly not
“reasonable”

» How much adaptive maintenance cost is
“reasonable”?

» How much perfective maintenance cost is
“reasonable?
n Measuring “reasonable” costs in terms of
percentage of life cycle costs doesn't make
sense

‘_-’ (My) High-level answer

n For perfective maintenance, the objective
should be for the cost of the change in the
implementation to be proportional to the cost
of the change in the specification (design)

Ex: Allowing dates for the year 2000 is (at most) a

small specification change

Ex: Adding call forwarding is a more complicated

specification change

Ex: Converting GizmoBall into an ATM machine is

‘_-‘ (Common) Observations

» Maintainers often get less respect than
developers

» Maintenance is generally assigned to the least
experienced programmers

n Software structure degrades over time

» Documentation is often poor and is often
inconsistent with the code

n Is there any relationship between these?

Laws of Program Evolution

Program Evolution: Processes of Software Change
(Lehman & Belady)

» Law of continuing change: » P-type programs
“A large program that is » Well-defined, precisely

used undergoes continuing izzclfijlenge < efficient
n I ICI
change or becomes implementation
progressively less useful.” .+ Ex: sort
» Analogies to biological n E-type programs
evolution have been made; » Tll-defined, fit into an
the rate of change in gxsirr'g:fn”eggz‘g
software is generally far ;
» The challenge is
faster managing change

‘_-‘ Law of increasing complexity

n “As a large program is continuously changed,
its complexity, which reflects deteriorating
structure, increases unless work is done to
maintain or reduce it.”

» Complexity, in part, is relative to a programmer’s
knowledge of a system
» Novices vs. experts doing maintenance
» Cleaning up structure is done relatively
infrequently

» Even with the recent interest in refactoring, this seems
true. Why?

‘_-| Reprise

n The claim is that if you measure any
reasonable metric of the system
» Modules modified, modules created, modules
handled, subsystems modified, ...
» and then plot those against time (or releases)
n then you get highly similar curves regardless
of the actual software system

n A zillion graphs on
http://www.doc.ic.ac.uk/~mml/feast1/

Statistically regular growth

n “Measures of [growth] are cyclically self-
regulating with statistically determinable
trends and invariances.”

» (You can run but you can't hide)
» There’s a feedback loop
» Based on data from 0S/360 and some other
systems
» Ex: Content in releases decreases, or time
between releases increases

n Is this related to Brooks’ observation that adding
people to a late project makes it later?

Open question

n Are these “laws” of Belady and Lehman actually
inviolable laws?
» Could they be overcome with tools, education,
discipline, etc.?
n Could their constants be fundamentally improved to
give significant improvements in productivity?
- Within the past five years, Alan Greenspan and others have
claimed that IT has fundamentally changed the productivity
of the economy: “The synergistic effect of new technology is

an important factor underlying improvements in
productivity.”

‘_-‘ Approaches to reducing cost

n Design for change (proactive)

» Information hiding, layering, open
implementation, aspect-oriented
programming, etc.

n Tools to support change (reactive)
» grep, etc.
» Reverse engineering, program

Approaches to reducing cost

n Improved documentation (proactive)
« Discipline, stylized approaches

» Parnas pushes this very hard, using a tabular form
of specifications

n Literate programming
n Reducing bugs (proactive)
» Many techniques, some covered later in the
quarter
n Increasing correctness of specifications
(proactive)
n Others?

