! Software requirements redux

‘_-‘ Today

n Take another look at software
requirements
n Two approaches
n Use cases for helping effectively elicit
requirements
» Finite-state specifications of reactive
systems

‘_-’ Use cases: a quick preview

n A use case is a description of an
example behavior of the system as
situated in the world
» Jane has a meeting at 10AM; when Jim

tries to schedule another meeting for her
at 10AM, he is notified about the conflict

» Similar to CRC (class responsibility collaborator) and
eXtreme programming “stories”

How to use them

n Teams write them down and talk
through them
» Interacting with the customers, of course

n This process raises lots of questions at
first, which forces a team to think
through and clarify some key issues

n Later it helps in producing the
requirements document

‘_-| Use cases and actors

n Use cases represent specific flows of
events in the system

n Use cases are initiated by actors and
describe the flow of events that these
actors are involved in

n An actor can be anything that interacts
with a use case; it could be a human,
external hardware (like a timer) or
another system

‘_-| Jacobson example: recycling

The course of events starts when the customer presses the “Start-
Button” on the customer panel. The panel’s built-in sensors are
thereby activated.

The customer can now return deposit items via the
customer panel. The sensors inform the system that an object has
been inserted, they also measure the deposit item and return the
result to the system.

The system uses the measurement result to determine the
type of deposit item: can, bottle or crate.

The day total for the received deposit item type is
incremented as is the number of returned deposit items of the
current type that this customer has returned...

‘_-’ How are the entities related?

n There are many relationships among
the entities in a system — these entities
are roughly the actors in the use cases

n These are often captured in a diagram
usually called an object model

‘_-‘ Object models

n There are many “languages” for defining
object models
» All object-oriented modeling techniques have such

a language (OMT, UML, Booch, etc.)

n But the heart of these is basically Chen’s
entity-relationship diagrams (ERDs)

n Basically, boxes represent entities and
connectors represent relationships

‘_-’ Trivial example

n Each of the two entities has a
single attribute
» This is similar to an instance
variable
. . . Line |2+
n There is a relationship (or Intersects
association) named Intersects name name
between the entities
» This reads “2 or more Lines
intersect in 0 or more Points”
« Different notations do this in
different ways

Point

‘_-‘ Aggregation

Microcomputer

0

| [I \

‘ Monitor ‘ System ‘ ‘ Mouse Keyboard
box
0
I | | 4
‘Chassis ‘ CPU ‘ ‘ RAM ‘ ‘ Fan ‘

n Aggregation represents an /s-part-of relationship
Agaregation O

‘_-| Whence inheritance?

n These notations indeed support the
representation of the inheritance
relationship

n However, it's quite unusual for a good
requirements object model to include
inheritance relationships

» Ones’ design documents might do so,
however

‘_-| Recap

n Use use cases to define instances of the
behavior of a system
» Beware: it's very hard to show

completeness of a large collection of use
cases

* Finite state machines

n What have you used these for before?

Finite-State Specifications

n There is a large class of specification
languages based on finite state machines

n Often primarily for describing the control
aspects of reactive systems

n The theoretical basis is very firm

» Lots of theory on finite-state machines, plus
analysis support from theorem proving and model
checking

» There are techniques for formally checking the
properties of these machines

Walkman example

(due to Alistair Kilgour, Heriot-Watt University)

Symbols on back Switchto toggle
= =3
once contimons iy
ides in diagrams. Rewind button (r)
e (repeat e

o strop
—
- a0 PLAY
vy s “m

the side being
played, event cs

* What happens when...?

« The implementers need to know, the users need to know, ...

Reactive systems

n Essentially event-driven systems that responds to
both external (from the environment) and internally-
generated stimuli, and also provides stimuli to the
external environment

n These are generally embedded systems in which we
care about the behavior of the overall system, not
the software per se

n As fewer and fewer complex systems are built
without software — one can legitimately view this as
inappropriate and, in some cases, perhaps even
unethical — the pressures on properly specifying
(and analyzing) reactive systems increases

* Statecharts (Harel)

n A visual formalism for defining finite state
machines

n A hierarchical mechanism allows for complex
machines to be defined by smaller
descriptions
» Parallel states (AND decomposition)
» Conventional OR decomposition

n The reduced size of the description is a
central piece of the leverage of Statecharts

()

-

Walkman
example:
statechart

Communicating state
machines

n In conventional state machines, precisely one
state must be occupied at a given time

n In Statecharts, every machine in a
composition must occupy one state at a given
time

» This allows (in part) the blow-up of representation
to be mitigated, because now a pair of
communicating state machines can represent NxM
states in the overall machine using N+M states

Hierarchical state machines

n Harel’s additional insight was to allow the
hierarchical definition of state machines
It's basically an and-or tree of state machines
Machines separated by dotted lines are “and”
machines, where each of the machines occupies
exactly one state at a time; it's easy to imagine
taking the cross product to create a flattened
machine
Everything else is an “or” machine, essentially like
a standard state machine (although they can in
turn be nested “and” machines)

An RSML example

n The following slide shows a very rough “statechart” from RSML
» RSML is a variant of statecharts developed specifically for the
specification of TCAS (Traffic Collision Avoidance System)
n Three high-level states: on, off, and panic
n The on state is expanded and has three parallel states:
temperature, rod movement, and rod configuration
n The only non-traditional statecharts feature in this description is
the temperature state, which uses a bus that connects all
substates (too hot, hot, okay, cold) to one another
n There are six events listed at the bottom (this is an incomplete
list)
» Each event has a name, a description of how it is generated
(externally or by a specific sub-machine in the description), and a
list of the sub-machines that react to that event

‘ Move In

Sample transitions

« This slide shows three sample

- transitions
Trigger_Event: Tenp_Update

Condi tion: Tenperature in Too Hot « Conditions on the transitions are
Qut put Action: Panic_Event common

« Output actions are also listed here
P

Trigger_Event: Tenp_Update
Condi tion: Rod_Mvement in Ready and Tenperature in Hot
Qut put Action: Initiate_Mve

Feaiy

Trigger_Event: Clock_Event
Condi tion: Rod_Movenent in Just_Mved and
t > t(entered(Just_Moved))+ Move_Del ay

Temperature Rod Movement Rod Configuration
Tenp_Readi ng External Tenperatur e
Events Initiate_Mve Rod_Move Rod_Config
Move_Finished External Rod_Config
Rod_Updat ed Rod_Config Rod_Move
a ock_Event Ext ernal Rod_Move
Tenp_Updat e Tenper at ur e Rod_Mbve

n External—interactions with environment

» Internal events, too, to control the
machine

» An external event triggers a cascade of
internal events (micro steps)

» Stability reached before next external
event (there are other models, too)

Semantics

» What to do when there are multiple events available:
which of the enabled transitions should be taken?
n There are literally dozens of (published) choices, with
subtle distinctions
» Some of the more theoretically pleasing semantics
seem, unfortunately, to be less intuitive to people
n Itis, however, critical to have a well-defined
semantics; after all, these are specification languages
» The most common semantics are the “Statemate
semantics”, Harel and Naamad, which define the formal
semantics of statecharts in terms of the operational
semantics defined by the Statemate tool
n At the same time, for most “normal” examples, the
differences among the semantics are not significant

Reasoning

n The definition of precise semantics
allows reasoning of the meaning of
statecharts

n Given an initial state
» And a set of possible external events
» What states can be reached?

Model checking

n In the last decade an approach called mode/
checking has taken off as a way to verify
properties of a state machine

n A model checker accepts two inputs
A state machine
» A temporal language formula

n And produces one output

n Either “true” (the formula is satisfied by the state
machine) or “false” (with a counterexample — a
trace through the machine — provided)

Model checking II

n The ability to formally and precisely check
properties of machines has vastly increased
their value

n Model checking is a complex technology that
is becoming increasingly ubiquitous not only
in research, but also in practice
» Ex: the SLAM (or Static Driver Verifier) project at

Microsoft Research, using model checking to
ensure properties of device drivers

‘_-| Recap

n Use cases can help elicit requirements from
customers
n Statecharts can describe reactive systems
n Precisely
» Can be analyzed to ensure particular properties
n Lots of other approaches not covered here!

