CSE403

! Lecture 6:

Best Practices for
Software System Design

Valentin Razmov, CSE403, Sp'05

Techniques for Design

n “Treat design as a wicked, sloppy, heuristic process.
Don't settle for the first design that occurs to you.
Collaborate. Strive for simplicity. Prototype when you
need to. Iterate, iterate, and iterate again. You'll be
happy with your designs.”

Steve McConnell, Code Complete, 2*? ed., chap 5,
http://www.cc2e.com/docs/Chapter5-Design.pdf

n Best practices for software system design

n Standard notations for expressing designs
» Dataflow / state diagram
» Class diagram
» Sequence diagram

Notations:
Dataflow / State Diagram

n High-level, coarse grained

n Used to describe interactions between the
components of a system

n Example:

Notations:
Class Diagram

n Medium-level

n Used to describe the relationships between
classes (modules) in the system

n Example:

Notations:
Sequence Diagram

n Low-level, fine-grained

n Used to describe sequences of invocations
between the objects that comprise the system

n Example:

Your Questions on Notations

‘_-| for Software Design




Best Practices for Software
Design

n Create at least three (3) independent
designs and choose the best among them.

n Keep it simple (a.k.a. Software Features
KISS principle). Actually Used

7%
n Scale down the
feature set to only the ' Always
parts that are strictly ~ 45% o often

B Sometimes|

necessary 16% |mRarely

W Never

13%

19%

Reference: Standish report, http://www.standishgroup.com/

Best Practices for Software
Design (cont.)

n Ask yourself how you may test your design /
components easily.
» Testability is correlated with good design quality.
» If you need to do extra work to test, something is wrong.
» The culprit is usually tight coupling between modules.

n Do not invest too much into drawing early
designs - they will change substantially.
» Write on index cards, rearranging and redrawing.

» Write on whiteboards and take snapshots with a
camera.

» Don't use UML or other CAD tools - they discourage

changes and your design documents will quickly
become obsolete.

Best Practices for Software
Design (cont.)

n Learn and use design patterns as much as you
can.
» They are distilled knowledge about good designs.

~ Reference: Design Patterns Explained (277 ed.),
Alan Shalloway

n Establish and maintain a clear audit trail.

» It requires little investment upfront but is invaluable
for debugging purposes.

Best Practices for Software
Design (cont.)

n Consider if there are any single points of
failure or bottlenecks in your designs.
» Can those be avoided or compensated for?

n Make the common case fast and the
uncommon case correct.
» But do not spend time on optimizing code early on.

n “It /s easier to optimize correct code than to correct
optimized code.” --Donald Knuth

Best Practices for Software
Design (cont.)

n Encapsulate changing components; fix the
interfaces between them.
» Why not allow interfaces to change in order to enable
the addition of new components later on (as needed)?

» Reference: “On the Criteria to be Used in Decomposing
Systems into Modules”, David Parnas

n Use abstractions as much as possible.
» Example (what not to do):
class Square {
double lower_left_x_coord;
double lower_left_y_coord;
double lower_right_x_coord;
double lower_right_y_coord;

Best Practices for Software
Design (cont.)

n Favor composition over inheritance.
» Example:

n A module should have a single responsibility.
» Principle of strong cohesion
» “God-object” metaphor




Your Questions on Best
* Practices for Software Design




