CSE 403
! Lecture 5 [Notkin]

Software requirements
&
Software design

* Today'’s educational objectives

n Be able to distinguish a system'’s
requirements from a program that realizes
those requirements

» Understand that the driving force behind
design is managing complexity

» Non-objectives for today: make you great
requirements engineers and/or great
designers

Software requirements:
* your definitions?

Software design:
* your definitions?

What vs. How?

n A classic notion is that the requirements are
the “what” and the program (design) is the
\\hOWII

n But “what” and “how” are relative terms
» Parsing is the what, a stack is the how

A stack is the what, an array or a linked list is the
how

» Alinked list is the what, a doubly linked list is the
how

The Machine and the World:
* Michael Jackson

n The requirements are in the application domain

n The program (design) defines the machine that has
an effect in the application domain

n Ex: Imagine a database system dealing with books

Records,
databases,
pointers, etc.

Books, Authors,
Titles, etc.

‘_-’ Not a perfect mapping

n There are thingsin » There are things in
the world not the machine that
represented by a don't represent
given machine anything in the

n Examples might be: world
» Book sequels or n Examples might be:
trilogies » Null pointers
» Pseudonyms » Deleting a record
» Anonymous books » Back pointers

‘_-‘ Success

n A system is judged not by properties of the
program, but by the effects of the machine in
the world

n You don't care how Caller ID works, just that
it works

n TCAS is a collision-avoidance system for
commercial aircraft

» Pilots love it (on the whole) because it helps them
fly more safely and easily — not because it has
great data structures

‘_-’ Software failures

n More software projects fail because
they don't meet users needs than for
any other reason

Three challenges

n To figure out the desired effects
(requirements) of the machine in the world
» Beyond scope of class; not needed for GizmoBall

n To figure out how to write this down in an
effective way

n To figure out how to make sure that the
machine (program) you build satisfies the
requirements
» More later in the quarter

‘_-| Why write it down?

n It will help clarify what you think

n It is necessary to communicate with
your users

n It is necessary to communicate with
your team members

» It could form the basis for a contractual
relationship

‘_-| How to write it down?

n Natural language
n Structured natural language
» A formal language
» We'll come back to this later in the quarter

‘_-’ Natural language

n Inherently ambiguous
» If you don't believe it,

make sure to teach or TA Shoes Must
an undergraduate course Be Worn
sometime!

» You all have your
favorite examples

«» The one on the right is Dogs Must
from Jackson, found at Be Carried
the base of an escalator

‘_-‘ Well?

n Must I carry a dog?

» What about the shoes I just bought that
are still in my shopping bag?

» Do dogs have to wear shoes?

n What does it mean to wear shoes?

n What are shoes?

» What are dogs?

“dog” (noun):
OED has 15 definitions, Webster’s has 11

n a highly variable domestic mammal closely
related to the common wolf

n a worthless person

n any of various usu. simple mechanical devices
for holding, gripping, or fastening that consist
of a spike, rod, or bar

n FEET
n an investment ... not worth its price
n an unattractive girl or woman

‘_-‘ “shoe” (noun, 6 Webster's)

n an outer covering for the human foot usu.
made of leather with a thick or stiff sole and
an attached heel

» another's place, function, or viewpoint

n a device that retards, stops, or controls the
motion of an object

n a device (as a clip or track) on a camera that
permits attachment of accessory items

n a dealing box designed to hold several decks
of playing cards

‘_-| Structured natural language

n I
n LA
o LA
LA.i.3
. LAii3.q
n Although not ideal, it is almost always better
than unstructured natural language
» Unless the structure is used as an excuse to avoid
content
n You will probably use something in this
general style

‘_-| What is design?

n The activity that leads from
requirements to implementation (verb)

n A description that represents a key
aspect of this activity (noun)

‘_-’ Design space

n There are many designs n» Collectively, these form
that satisfy a given set a design space
of requirements » A designer walks this

n There are also many space evaluating
designs that may at first designs
appear to satisfy the
requirements, but don't
on further study i@ %2

J=r=2=

‘_-‘ Design: managing complexity

n Of course, this design space isn't just sitting
out there for you to search like a library
catalog or the WWW

» Although limited progress is being made on this

n You must also generate the designs

n A key aspect of design generation is
understanding that the goal is to achieve the
requirements in the face of the limitations of
the human mind and the need for teams to
develop products

‘_-’ Decomposition

n Design is largely a process of finding
decompositions that help humans manage
the complexity

Understand that the design satisfies the
requirements

Allow relatively independent progress of team
members

Support later changes effectively
n Not all decompositions are equally good!

‘_-‘ Decompositions

n A decomposition
specifies a set of
components (modules)
and the interactions
among those modules

n The degree of detail in
the specification varies

‘_-| Comparing designs

n Not all decompositions are equally good

n S0, on what basis do we compare and
contrast them?

‘_-| Coupling and cohesion

n Given a decomposition of a system into
modules, one can partially assess the design
in terms of cohesion and coupling

n Loosely, cohesion assesses why the elements
are grouped together in a module

n Loosely, coupling assesses the kind and
quantity of interconnections among modules

‘_-’ Kinds of cohesion

n Elements can be placed together to
provide an abstract data type

» If they are all executed about the same
time (say, during initialization or
termination)

» because they will be assigned to a single
person

» because they start with the same letter
» because...

‘_-‘ Coupling

n Coupling assesses

the interactions
between modules

n It is important to
distinguish 4/ind and

strength
» kind: A calls B, C

v

inherits from D, etc.
» And directionality
n strength: the number
of interactions

‘_-’ “Good” vs. “bad” coupling

n Modules that are loosely coupled (or
uncoupled) are better than those that
are tightly coupled

n Why? Because of the objective of
modules to help with human limitations
» The more tightly coupled are two modules,
the harder it is to think about them
separately, and thus the benefits become
more limited

‘_-‘ What kind (of relations)?

n There are many kinds of
interconnections (relations) to consider
» calls, invokes, accesses, ...
» how about invokes in an OO language

using dynamic dispatch?

» others?

n Question: how many different relations
are there among components of a
software system?

‘_-| names vs. invokes

n Here is an example of a
mix of relations

n Module A registers

interest with an event Registers interest:
that B can announce

» When B announces that n
event, a function in A is Invokes with an event
invoked

» A knows the name of B,
but B doesn't know the
name of A

‘_-| Hierarchical designs

» Loose coupling is often
associated with
hierarchical designs

» They also tend to arise from
repeated refinements of a
design

» Hierarchies are often more
coupled than they appear

» Because of other relations

‘_-’ Other dimensions (Bergland)

n Complexity

A design with really complex modules is worse
than a design with simpler modules

» Complexity is brutally hard to measure
n Correctness

n Correct designs dominate incorrect ones
n Correspondence

» How closely does it map to the requirements
specification? 7his is critical to evolution!

‘_-‘ Use a single module?

n Great cohesion!
n No coupling!
» Where's the failure?

‘_-’ Coupling and cohesion...

n ...are just guidelines

n Again, they don't by themselves give
criteria for modular decomposition

Whirlwind...

n ...we'll do more later on!
n Ask questions!

