
1

CSE 403, Software Engineering
Lecture 2

Software Life Cycle

Announcements

Quiz section will be held in CSE 305

Project Schedule

Preliminary Design, April 15
Preliminary Release, May 6
Test Plan, May 20
Design Critique, June 1
Final Release, June 1

Writing assignment

Due Monday, 1:30 pm, April 4
Individual Assignment
Target length: two pages

Critique the Surgical Team model proposed by Brook's as an
organization for your GizmoBall project. You should first
describe how you would adapt the model to a 6 or 7 person
team, and then evaluate how appropriate it would be as a
team organization.

Lecture schedule

1. Introduction
2. Life Cycle
3. Teams
4. Risk analysis
5. Requirements and Design
6. Development and Deployment

Course goal

To gain an understanding that
developing a software product is not
merely a matter of programming

2

If it's not merely programming

What is it?

Life Cycle

Software life cycle Life Cycle (McConnell)

System specification

Requirements Analysis

Architectural Design

Detailed Design

Coding and Debugging

Unit testing

System testing

Maintenance

Life Cycle (01 au slides) Model Goals

Understand what goes on
Organize workflow
Formal process

3

Waterfall Model

Strong directionality
in stages
Limited up stream
interaction
Very large costs in
fixing errors arising
from early stages

Critiques of the Waterfall
Model

Spiral model What is the value of a model

Understand process
Defining procedures
Decomposing workflow
Track, clarify, modify requirements
through life cycle
Management tool

Limitation of models

A model is just a model
Artificial constraints
Compromises with model necessary

(as with almost everything else in SE)

Risk of overemphasizing process
The process is not the end in itself
Product delivery is

Requirements on requirements

Who are they for?
What are they for?

Pitch to management
Fodder for market study
Basis for legal contract

Easy to understand, concise, complete,
unambiguous, . . .

4

Requirements

"Gather and document the functions
that the application should perform for
the users in the users' language and
from the users' perspective"
Requirements should neither constrain
nor define methods of implementation

Customers

(Almost) every large software project
has a customer who is paying the bills
Project requirements driven by this
customer

