
Quality Assurance:
Test Development &

Execution

Ian S. King
Test Manager, Windows CE

Base OS, Compilers & Diagnostics
Microsoft Corporation



Introduction: Ian King

� Manager of Test Development for
� Windows CE Base OS (kernel, core drivers, file

systems)
� Compilers (x86, ARM, MIPS, SH4)
� Diagnostics (debugger, connectivity, tools)

� Previous projects at Microsoft:
� MSN 1.x online service, Site Server 3.0,

TransPoint online service, Speech API 5.0
� Previously: business analyst, Pacific Telecom



Implementing Testing



What makes a good tester?
� Analytical

� Ask the right questions
� Develop experiments to get answers

� Methodical
� Follow experimental procedures precisely
� Document observed behaviors, their precursors

and environment
� Brutally honest

� You can’t argue with the data



How do test engineers fail?

� Desire to “make it work”
� Impartial judge, not “handyman”

� Trust in opinion or expertise
� Trust no one – the truth (data) is in there

� Failure to follow defined test procedure
� How did we get here?

� Failure to document the data
� Failure to believe the data



Test Categories
� Functional

� Does it work?

� Performance
� How fast/big/high/etc.?

� Security
� Access only to those authorized

� Stress
� Working stress
� Breaking stress – how does it fail?

� Reliability/Availability



Testability
� Can all of the feature’s code paths be exercised

through APIs, events/messages, etc.?
� Unreachable internal states

� Can the feature’s behavior be programmatically
verified?

� Is the feature too complex to test?
� Consider configurations, locales, etc.

� Can the feature be tested timely with available
resources?
� Long test latency = late discovery of faults
� Too many serial dependencies?



Test planning

� What will I test?
� Valid, invalid, error conditions, environmental,

stress, perf, security, etc.
� How will I test it?

� API tests, ‘black box’ tests, fault injection, code
inspection, inference

� How will I implement those tests?
� Manual, automated



Manual Testing

� Definition: test that requires direct human
intervention with SUT

� Necessary when:
� GUI is tested element
� Behavior is premised on physical activity (e.g.

card insertion)
� Advisable when:

� Automation is more complex than SUT
� SUT is changing rapidly (early development)



Automated Testing

� Good: replaces manual testing
� Better: performs tests difficult for manual

testing (e.g. timing related issues)
� Best: enables other types of testing

(regression, perf, stress, lifetime)
� Risks:

� Time investment to write automated tests
� Tests may need to change when features change



Types of Automation Tools:
Record/Playback
� Record “proper” run through test procedure

(inputs and outputs)
� Play back inputs, compare outputs with

recorded values
� Advantage: requires little expertise
� Disadvantage: little flexibility - easily

invalidated by product change
� Disadvantage: update requires manual

involvement



Types of Automation Tools:
Scripted Record/Playback
� Fundamentally same as simple

record/playback
� Record of inputs/outputs during manual test

input is converted to script
� Advantage: existing tests can be maintained

as programs
� Disadvantage: requires more expertise
� Disadvantage: fundamental changes can

ripple through MANY scripts



Types of Automation Tools:
Script Harness

� Tests are programmed as modules, then run
by harness

� Harness provides control and reporting
� Advantage: tests can be very flexible
� Advantage: tests can exercise features

similar to customers’ code
� Disadvantage: requires considerable

expertise and abstract process



Types of Automation Tools:
Verb-Based Scripting

� Module is programmed to invoke product
behavior at low level – associated with ‘verb’

� Tests are designed using defined set of verbs
� Advantage: great flexibility
� Advantage: changes are usually localized to

a given verb
� Disadvantage: requires considerable

expertise and high-level abstract process



Test Corpus

� Body of data that generates known results
� Can be obtained from

� Real world – demonstrates customer experience
� Test generator – more deterministic

� Caveats
� Bias in data generation?
� Don’t share test corpus with developers!



Instrumented Code:
Test Hooks

� Code that enables non-invasive testing
� Code remains in shipping product
� May be enabled through

� Special API
� Special argument or argument value
� Registry value or environment variable

� Example: Windows CE IOCTLs
� Risk: silly customers….



Instrumented Code:
Diagnostic Compilers

� Creates ‘instrumented’ SUT for testing
� Profiling – where does the time go?
� Code coverage – what code was touched?

� Really evaluates testing, NOT code quality
� Syntax/coding style – discover bad coding

� lint, the original syntax checker
� Complexity

� Very esoteric, often disputed (religiously)
� Example: function point counting



Advanced Tools:
Modeling

� Example: AsmL
� Model behavior as set of states and transitions
� Even multithreaded code is inherently serial
� Stochastic elements can be explicit

� Advantage: test design before code is written
� Advantage: test the test code
� Disadvantage: creation and maintenance

overhead



Instrumented platforms

� Example: App Verifier
� Supports ‘shims’ to instrument standard system

calls such as memory allocation
� Tracks all activity, reports errors such as

unreclaimed allocations, multiple frees, use of
freed memory, etc.

� Win32 includes ‘hooks’ for platform
instrumentation



Environment Management
Tools
� Predictably simulate real-world situations

� MemHog
� DiskHog
� CPU ‘eater’
� Data Channel Simulator

� Reliably reproduce environment
� Source control tools
� Consistent build environment
� Disk imaging tools



Test Monkeys

� Generate random input, watch for crash or
hang

� Typically, ‘hooks’ UI through message queue
� Primarily catches “local minima” in state

space (logic “dead ends”)
� Useless unless state at time of failure is well

preserved!



Finding and Managing Bugs



What is a bug?

� Formally, a “software defect”
� SUT fails to perform to spec
� SUT causes something else to fail
� SUT functions, but does not satisfy usability

criteria
� If the SUT works to spec and someone wants

it changed, that’s a feature request



What do I do once I find one?

� Bug tracking is a valuable tool
� Ensures the bug isn’t forgotten
� Highlights recurring issues
� Supports formal resolution/regression process
� Provides important product cycle data
� Can support ‘higher level’ metrics, e.g. root cause

analysis
� Valuable information for field support



What are the contents of a bug
report?

� Repro steps – how did you cause the failure?
� Observed result – what did it do?
� Expected result – what should it have done?
� Collateral information: return values/output,

debugger, etc.
� Environment

� Test platforms must be reproducible
� “It doesn’t do it on my machine”



Tracking Bugs
� Raw bug count

� Slope is useful predictor
� Ratio by ranking

� How bad are the bugs we’re finding?
� Find rate vs. fix rate

� One step forward, two back?
� Management choices

� Load balancing
� Review of development quality



Ranking bugs
� Severity

� Sev 1: crash, hang, data
loss

� Sev 2: blocks feature, no
workaround

� Sev 3: blocks feature,
workaround available

� Sev 4: trivial (e.g.
cosmetic)

� Priority
� Pri 1: Fix immediately -

blocking
� Pri 2: Fix before next

release outside team
� Pri 3: Fix before ship
� Pri 4: Fix if nothing better

to do ☺



A Bug’s Life
Bug activated

Triage
Fix?

Defect fixed -
bug resolved

Fixed

Fixed?

Regression testing

Bug closed

Won’t Fix
Not Repro
By Design
Postponed

NO

YES

NO

YES



Regression Testing

� Good: rerun the test that failed
� Or write a test for what you missed

� Better: rerun related tests (e.g. component
level)

� Best: rerun all product tests
� Automation can make this feasible!



Dogfood

� “So good, we eat it ourselves”
� Advantage: real world use patterns
� Disadvantage: impact on productivity
� At Microsoft: we model our customers

� 50K employees
� Broad range of work assignments, software savvy
� Wide ranging network (worldwide)



To beta, or not to beta

� Quality bar for beta release: features mostly
work if you use them right

� Pro:
� Get early customer feedback on design
� Real-world workflows find many important bugs

� Con:
� Do you have time to incorporate beta feedback?
� A beta release takes time and resources



Developer Preview

� Different quality bar than beta
� Known defects, even crashing bugs
� Known conflicts with previous version
� Setup/uninstall not completed

� Goals
� Review of feature set
� Review of API set by technical consumers



When can I ship?

� Test coverage is “sufficient”
� Bug slope, find vs. fix lead to convergence
� Severity mix is primarily low-sev
� Priority mix is primarily low-pri


