
DrJava
Development

Charles Reis
CSE 403 Guest Lecture

DrJava

• Pedagogic Java IDE

• Simple, Interactive

• Used at dozens of
schools around the world

• Freely Available

Development Overview

• Written by students at Rice University

• Graduate, Undergraduate

• High rate of turnover

• Open Source

• Extreme Programming

Development Team

Professor

PhD Student Masters Student

Undergrad Undergrad Undergrads

Comp 312

On the Inside

• Java with generics (List<String>)

• ~400 classes, 50,000 lines of code

• Complex (unit tests are critical!)

• Two JVMs, plus multithreaded GUI

• RMI, JDI, Custom Classloaders

• Backward compatibility

Benefits of Open Source

• Freely available

• Tool and Management Support

• Incorporate existing code

• Educational value

• Word of mouth, Credibility?

Tools and Management

• Sourceforge.net

• Free hosting for 80,000 projects

• Professional management tools

• Track features, bugs, tasks, support

• Ant, JUnit, CVS

Use Existing Code

• Dynamic Java

• Java source code interpreter

• Critical to DrJava's quick maturity

• JUnit Integration

Educational Value

• Source code available for students, tinkerers

• Credible use of undergrads in Comp 312

• Building block for research tools (DrScala)

Complications

• Choice of License is tricky

• GPL: true "free software"

• All incorporated/derivative works GPL'd

• BSD: more flexible, fewer guarantees

• Allows us to use JUnit

Extreme Programming

• Simple practices that work well together

• Pair Programming

• Unit Testing

• Continuous Refactoring

• Incremental Development

• On-site Customer

Typical Activity

• Prioritize bug reports

• Write test to exhibit bug

• Pair program to fix bug

• "Commit" (update, compile, test, commit)

• Release

Releases

• Theory: repository can always be released

• Practice: not exactly...

• Development releases (weekly/monthly)

• Stable releases (a few each year)

Life Cycle

• Peak development in spring and summer
(Comp 312, summer interns)

• 3-4 large features, many small fixes

• Masters Theses

• Maintenance in "off-season"

Lessons Learned

• Unit tests are essential to stability

• Work incrementally

• XP is effective for high turnover

• Much to be gained from open source,
even without many external developers

Difficulties

• Hard to test (and design) GUIs

• Hard to enforce good test coverage

• Concurrency can be a mess

• Java isn't really platform independent...

• Tough to keep documentation up to date

• Maintenance/support is a full time job

Closing Thoughts

• Immensely satisfying to work on a widely
used product

• Open source is a great fit for academia
(perhaps elsewhere as well)

• XP can work very well for small teams

More Info

• http://drjava.org

• creis@cs.washington.edu

