
21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 1

LittleApp to BigApp

CSE 403, Spring 2004
Software Engineering

http://www.cs.washington.edu/education/courses/403/04sp/

21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 2

Readings and References
• Chapter 19, Designing for Change, Rapid Development,

McConnell
• Perfection and Simplicity, Taste and Aesthetics, and

Designing Distributed Systems, from A Conversation
with Ken Arnold, by Bill Venners
» http://www.artima.com/intv/perfect.html
» http://www.artima.com/intv/taste.html
» http://www.artima.com/intv/distrib.html

21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 3

Programming Systems
Product

Programming System

Programming Product

Program

interfaces, system integration

generalization, testing,
documentation, maintenance

LittleApp

BigApp

3 X

3 X

from Mythical Man-Month

21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 4

From LittleApp to BigApp
• LittleApp prototypes can show that the basic

concepts are workable
• Likely open issues

» Correctness - dummy data
» Completeness - inflexible sources, usability
» Robustness - frustrating response to errors
» Style - design, generalization, documentation

21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 5

Design issues
• Interfaces

» What are the defined interfaces?
» Which fundamental decisions cannot be changed

and still use the same architecture?
• Modules

» What are the major modules using those interfaces?
» Can fundamental design decisions in one module

be changed without affecting the other modules?
• Documentation

21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 6

Designing for Change
• Change happens

» underlying technology changes, a performance
goal is not met, new requirements are levied

» perhaps the product is a success and lives for a
decade or two!

• A successful design
» hides the implementation decisions
» can change locally without causing ripples

throughout the entire structure

21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 7

Not a single tool, but an approach

• Identify areas likely to change
• Use information hiding to conceal the design

decisions
• Develop a change plan
• Define families of programs
• Use object-oriented design

from McConnell, Chap 19

21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 8

What might change?
• Hardware for sure - many possible platforms
• File formats - how many graphics formats?
• Inputs and outputs, user’s natural language
• Non-standard language features, libraries
• Features that are difficult to implement (AWT)
• Global variables
• Specific data structures and abstract data types
• Business rules, sequence of actions
• Requirements that were excluded, new features

21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 9

Implementation is not just a detail
• What is important to keep in mind when you

are designing a distributed system?
» A distributed system, in the sense in which I take

any interest, means a system in which the failure
of an unknown computer can screw you.

» Failure is the defining difference between
distributed and local programming, so you have to
design distributed systems with the expectation of
failure.

from Designing Distributed Systems, A Conversation with Ken Arnold, by Bill Venners

21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 10

Develop a change plan
• Use abstract interfaces first, then classes
• Never use hardcoded literals
• Use late binding strategies

» dynamic allocation of data structures
» let the data structure tell you how big it is

• Use table driven strategies
» property files, registries
» configuration editors and tools (gcc config …)

21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 11

More change plan
• Don’t duplicate code or state

» put it in a single method and call it when needed
• Keep the methods and classes simple and

cohesive
» easier to reuse or use in a new way

• Avoid coupling
• Keep the general purpose layers free of

implementation leakage from below

21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 12

Define families of programs
• What are the change vectors?
• If your product is a success, where will it go

next?
» international? - language, currency, measurement
» system scale? - cell, PDA, desktop browser, server
» product distribution? - corporate, personal retail,

educational, ad supported, free “lite”
• Think about the minimal subset of functions

needed in all versions and how to present it

21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 13

Perfection and Simplicity
• I once heard you say there is no such thing as a

perfect design. Could you clarify what you meant by
that?

• There is no such thing as a perfect design for a couple
of reasons.
» All designs take place in context … who will be using your

design? … if you try to create a perfect design you will
expend a huge amount of effort ... then there's the problem
of predicting the future.

• The best that people can reasonably hope for is to put
forth an appropriate amount of effort and get a good
design that is sufficient.

fromPerfection and Simplicity, A Conversation with Ken Arnold, by Bill Venners

21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 14

Now build it!
• Bad design leads you down the wrong road
• Bad construction takes you down a road full of

potholes and bone-jarring problems
• Good construction techniques

» help build in quality the first time
» avoid having to back up and start over
» provide good visibility on how it’s going without

using made-up numbers
• “we’re 96% done”

21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 15

Some construction fundamentals
• Agreed-on coding standards

» naming, layout, documentation
• Data-related concepts

» scope, persistence, binding times
• Control-related

» complexity, control structures, exceptions
• Errors and exceptions

» assertions, defining and handling exceptions

21-Apr-2004 cse403-08-LA2BA © 2004 University of Washington 16

More construction fundamentals
• Integration strategies

» Unit-testing and debugging
» Build and packaging practices

• Code tuning and performance measurement
• Programming tools

» editors, IDE, interoperability
» group work support tools (email, change visibility)
» source code revision management
» bug tracking

