
ArchJava
Connecting Software Architecture to

Implementation

Jonathan Aldrich
Craig Chambers

David Notkin

University of Washington

Software Architecture

• Software Architecture:
the organization of software systems as a
collection of components, connections
between the components, and constraint on
the interactions between components.

Why should we care?

ADLs

• Old ADLs decouple implementation code from
architecture

• ArchJava’s contribution:
– Add architecture to language

• Architecture updated as code evolves
– Architecture is enforced by type system

A Parser Component

public component class Parser {

}

Component class
• Defines architectural object
• Must obey architectural constraints

Parser

A Parser Component

public component class Parser {
public port in {
requires Token nextToken();

}
public port out {
provides AST parse();

}

}

Components communicate through Ports
• A two-way interface
• Define provided and required methods

Parser outin

in out

A Parser Component

public component class Parser {
public port in {
requires Token nextToken();

}
public port out {
provides AST parse();

}
AST parse() {
Token tok =in.nextToken();
return parseExpr(tok);

}
AST parseExpr(Token tok) { ... }
...

}

Can fill in architecture with ordinary Java
code

Parser outin

Hierarchical Composition

public component class Compiler {
private Scanner scanner = new Scanner();
private Parser parser = new Parser();
private CodeGen codegen = new CodeGen();

Subcomponents
– Component instances inside another

component
– Communicate through connected ports

parser codegenscanner

Compiler
out in out in

Hierarchical Composition

public component class Compiler {
private Scanner scanner = new Scanner();
private Parser parser = new Parser();
private CodeGen codegen = new CodeGen();
connect scanner.out, parser.in;
connect parser.out, codegen.in;

Connections
– Bind required methods to provided

methods

parser codegenscanner

Compiler
out in out in

Evaluating Questions

• Does ArchJava guarantee consistent
architecture?

• Is ArchJava expressive enough for real
systems?

• Can ArchJava aid software evolution tasks?

Evaluation Questions

• Does ArchJava guarantee consistent
architecture?
- Yes, using the type system

• Is ArchJava expressive enough for real
systems?

• Can ArchJava aid software evolution tasks?

Evaluation Questions

• Does ArchJava guarantee consistent
architecture?
- Yes, using the type system

• Is ArchJava expressive enough for real
systems?
– Yes, tested in several case studies

• Can ArchJava aid software evolution tasks?

Case Study
River in the Light of ArchJava

The use of user-defined connectors in
ubiquitous computing systems

Aiman Erbad
Advisor : Craig Chambers
University of Washington

Ubiquitous computing system

P

Lamp

P
TV

M

M
Lamp

BED

Abstract representation

PTV

M

Lamp

Discovery Service

M P

Lamp

Room Control

Abstract representation

PTV

M

Lamp M P

Lamp

Discovery ServiceRoom Control

Abstract representation

PTV

M

Lamp M P

Lamp

Discovery ServiceRoom Control

River

• River
– Two communication primitive function calls, and

events
– Use SQL to specify the end point

String query = " Select id
From location-to-id
Where type = 'lamp' AND

location = ‘room' "

User-defined connectors

• The connector abstraction

Lamp

control

Room Control

control

LampCallConnector

User-defined connectors

• The connection abstraction

• User defined connectors:
– Capture communication between services

Lamp

control

Room Control

control

LampCallConnector

New Design
public class LampCallConnector extends RiverCallConnector {

static String query = " Select id
From location-to-id
Where type = 'lamp' AND

location = 'kitchen' “;
// typecheck and invoke functions are inherited from
//RiverCallConnector

}

New Design
public class LampCallConnector extends RiverCallConnector {

static String query = " Select id
From location-to-id

Where type = 'lamp' AND
location = ‘kitchen' "

// functions are inherited from RiverCallConnector
}

/* Inside client – Room Control */

Control con = connect(this.control, Lamp.control)
with new LampCallConnector;

con.turnoff();

Evaluation Questions

• Does ArchJava guarantee consistent architecture?
- Yes, using the type system

• Is ArchJava expressive enough for real systems?
– Yes, in several case studies

• Can ArchJava aid software evolution tasks?
– Preliminary experience suggests:

• ArchJava highlights refactoring opportunities
– Library of connectors: Most of the code is written in a library

class, RiverCallConnector
• ArchJava encourages loose coupling
• ArchJava may aid defect repair

Conclusion

• ArchJava integrates architecture with Java code
• Control architecture consistency

– Keeps architecture and code synchronized
• Initial experience

– ArchJava can express real program architectures
– ArchJava may aid in software evolution tasks

• Download the ArchJava compiler and tools
http://archjava.fluid.cs.cmu.edu/

