Brad Woodward

Benjamin Higgins

CSE 403

April 13, 2004

LCO for a Location-Aware Item Framework

(including some sample applications)

Operational Concepts

The main idea for this project is to develop a framework that can be used to create location-aware item-based applications (e.g., scavenger hunts, tours, real-world adventure games), and then to demonstrate the framework’s capabilities through example applications. These applications will be used on location-aware handheld units connected to the Internet.

An “Item” is the basic unit of the framework and will be flexible enough to be used for many different applications. The common attributes of an Item are location (latitude, longitude), visibility requirements (e.g., distance from user, user possess required items), usage requirements (e.g., a treasure chest requires the appropriate key), acquisition requirements (e.g., butterfly Item requires a net and empty jar), and transferability settings.

Every Item will also have an associated icon, and a default action (e.g., display a message, pick up) when a user clicks on that icon on some sort of overhead view.

The client will also be visible as an Item to other users. This way, users can see each other and will be able to trade items and otherwise interact.

Example usage scenario

Susan is a student at the University of Washington. A friend of hers has developed a game called Ghost Hunt (using software included in a framework created by some CS students). Susan was told to create an account on the Item Framework System via the Web, which allowed her to download the framework software to her Pocket PC. Then she signed up for the Ghost Hunt game, which added a Ghost Hunt Item to her inventory and told her to visit the HUB lawn for the next step.

The next day, after class, Susan remembered to head to the HUB lawn. She turned on her Pocket PC and ran the client software. As she walked towards the HUB lawn, she saw several icons appear on her screen: one looked like a radar, another like a beam, and one like a note. As she approached, the software indicated to her that she was now close enough to interact with the Items. She clicked on the note icon, which brought up a dialog box telling her that ghosts had invaded UW campus and that it was up to her to catch them all by traveling around campus. The note directed her to pick up the Ghost Detector and the Ghost Beam if she hadn’t already. The Ghost Detector Item would allow her to see the ghosts on campus, and the Ghost Beam would allow her to capture them. Susan then picked up both items, after which she saw several Ghost icons appear! She then spent the next half hour walking around campus picking up Ghosts. The next day, she continued the game as she walked between classes.

System Requirements

The server will receive information about the client’s location and the client’s ID (by which the client’s inventory will be determined), and respond by giving the client a list of nearby visible Items.

The server will also respond to requests from the client to change the world in some way, most commonly by picking up an object (but other ways of changing the world are possible, like dropping an object, or transferring an object). However, if the client’s interaction with Items does not change the world (maintained by the server), then the client does not need to contact the server and can take care of the interaction itself.

The system will be designed to require a minimal amount of network traffic due to the fact that wireless Internet connectivity can be expensive.

System and Software Architecture

The server will maintain a database of Items and Users. Users will have inventories of Items. The database used will most likely be Microsoft SQL Server.

Users will explore the world with a handheld computer, like the HP iPAQ Pocket PC. The handheld will have some mechanism for location awareness; in this case a separate GPS unit with Bluetooth may work. For testing purposes, the client software will be designed to accept location coordinates from the user. The client needs to be able to contact the server at regular intervals. The client software will display the Items visible to the user by showing the Items’ icons. The client will accept user input primarily in the form of the user clicked on Items to interact with them, but other modes of input need to be accepted as well (e.g., an Item that requires a password in order to be used). When an Item is clicked, the client software will run that Item’s default action, which may or may not require contacting the server.

Client software will be developed using Microsoft Visual Studio .NET tools. Pocket PC emulators will also be used.

The server will be designed as a Web Service and will also make use VS.NET.

Lifecycle Plan

A wide variety of applications are possible with the framework, so there is a potential for many different types of users. For example, games created using the framework will be appealing to a wide range of ages, both casual and dedicated gamers alike. Tour applications would be for a wholly different type of user and used for a short period of time.

Independent developers can also make use of the framework to develop their own applications.

Feasibility Rationale

The framework itself is fairly simple and should be reasonable to implement. Sample applications can be scaled to the number of people working on the project as well. The major drawback would be the fact that GPS systems are not currently available and so testing would have to proceed by manually inputting coordinates.

In the unlikely event that there is not enough work to do, there are many ways to expand the framework: moving Items, Items that have advanced scripted actions, Items that react to your presence, and so forth. More ambitious applications for the framework could also be developed.

