Design Exploration of an Electronic Honor System
CSE 403: Software Engineering
Mary Dang

Kira Lehtomaki

Tanya Peters
Irma Rachmawati

Ann Sakata

Young-Mi Shin
Buying food from the ACM lounge is a unique business because buyers have 

options whether (s)he wants to pay based on his/her moral principles. Although most students are honest, there are times when the money collected is less than expected. Why? It usually happens when someone forgets his/her wallet on that day or does not have exact change for the food. Wouldn’t it be great if students could keep track of what they are buying and pay their balance at once? Our team would like to propose a system that will allow UWCSE students to put bytes (a substitution for 25¢) into an account that will keep track of their balance anonymously. The objective of this project is to reduce the amount of time students spend to donate money and increase the currency unit used by those students (from pennies/nickels to bills). As time is very valuable, we believe that a system that can save time is very important. For the rest of this proposal, we will discuss the elements of the Lifecycle Architecture (LCA), which includes the operational concepts, system requirements, system and software architecture, lifecycle plan, and feasibility rationale.

We would like to propose an anonymous donation-based system that will allow students in the UWCSE department to use their husky card to donate money to the ACM for the food provided in the lounge. This husky card system will be separate from the University of Washington’s Husky Card System. Students will be able to add bytes to their account and voluntarily deduct bytes from their account via a cue cat that scans the bar code on their husky card.
Both ACM officers and students will benefit from this system because it will be more convenient for students to donate money and it will be easier for the ACM officer to count the money. This system consists of three clients. One of the clients is a web service that would allow users to check the balance of accounts online. (It would basically be a chart of barcode numbers and the balance in “bytes.”) This service will be available over the internet, and will be designed to synchronize data every few hours. Although the data may not be precise at every point, but this lag in time should not cause any harm. 
Another client is for the buyer. They will have anonymous accounts (the users will be represented by their barcode only). They will be able to put “bits and bytes” on their card, and use this to donate to the ACM. This client will be available in the ACM lounge, and this interface will be accessible from only the ACM lounge. 

The last client is for the ACM officers, used to keep a backup copy of the database (just in case the server crashes), and to delete users from the database when the user requests it. 

Not only is this system simple and useful, but it is also very extensible; developers can add features to it easily, like adding the feature to track the availability of a certain product, or keep track of the deficit. This system will not be built to save anyone money. However, it will save everyone something more important: time.
The system that we propose consists of a database server and three types of clients: 
· ACM officers

· users at kiosk
· web service users
The server will be maintained to store user accounts (barcode numbers) and their balance (in bytes). It will also store the inventory and the total bytes that were donated to the ACM. The ACM officers can change the inventory and delete accounts. Web service users will be able to check their account online, change their personal password, and send anonymous feedback. The database will also be modified when a user interacts with the cue cat interface.
The ACM officers will be able to interact with the server using the above methods. They should also be able to dump the entire contents of the database into their personal computer as a backup file just in case something goes wrong with the server. 
The users at the kiosk will need to scan the barcode on the back of their husky card with a barcode scanner (for this project, a cue cat). The system should be able to recognize the barcode, and according to what transaction follows, update the account and/or the inventory. The user will be allowed to either put bytes on their account, or take a product. To end a transaction, the user will scan their card again. But, just in case they forget, there will be a timer that automatically ends the transaction after a certain amount of time elapses. If another husky card bar code is scanned, it will also end the previous transaction. Below is a state diagram with description to better explain the transactions allowed.

[image: image1.emf]S hello

Husky card

Error

Byte barcode,

Product UPC

e

byte

Byte barcode

UPC

Byte barcode

UPC

UPC

t = 0, Husky card

t = 0, Husky card

t = 0, Husky card

UPC Erreur

Byte barcode, invalid barcode

e

e

Invalid barcode

Invalid barcode

e

IT

From byte

From hello

From UPC

Diff. HC

Diff. HC

Diff. HC

e


State s: This is the start state. It shows a screen that holds the prices of the items. If the user scans the barcode from their husky card, the state becomes state 1. Otherwise, the state returns to the same state after going to an error state. 

State “hello”: This is the state that shows the user barcode and balance on the screen. The user is allowed to either add bytes to their account using a separate barcode provided on a sheet of paper, or buy an item by scanning the UPC of the item. If a UPC is scanned, the state becomes state “UPC”. If a byte amount is scanned, the goes to state “byte.” If a husky barcode is scanned the state will eventually return to state “s.” Otherwise, the state remains the same.

State “UPC”: This is the state that shows what items were scanned. If another UPC is scanned, the state remains unchanged, but adds an item to the list. Otherwise, the state remains unchanged, unless the transaction is ended by scanning a husky card.
State “byte”: This is the state that shows how many bytes you added onto your card. From this state, you can add more bytes, scan a UPC, or end the transaction.

Error, Erreur, IT: These states are error states that happen when an invalid barcode is scanned.

Timer: When the timer times out, all transactions will be terminated and state will return to state s.
From all states excluding state s, if the husky card is scanned, the transaction will be terminated, and the state will return to the start state s.
Also, as the user scans barcodes, for each scan, a response screen will show up to guide them through the transaction.
The web service users should be able to login and check their password protected account online, give anonymous feedback, and send a request to ACM officers to withdraw their account. Web service users may also request their password (in case they forget) via the anonymous feedback by submitting their barcode number.
The database should contain two sets of information: inventory (including quantity, price, and name) and user accounts (which have account numbers, byte balances, and passwords) 
The flexibility of the operational design would allow for a variety of optimized architecture.


















_1145028280.vsd
�

S�

hello�

�

Husky card�

Error�

�

Byte barcode,
Product UPC�

e�

byte�

Byte barcode�

UPC�

�

Byte barcode�

UPC�

UPC�

t = 0, Husky card�

�

t = 0, Husky card�

t = 0, Husky card�

UPC�

Erreur�

Byte barcode, invalid barcode�

e�

�

e�

Invalid barcode�

Invalid barcode�

e�

IT�

�

From byte�

From hello�

From UPC�

Diff. HC�

Diff. HC�

Diff. HC�

e�


