Specification Document

Hendi Chandi, Aleksandr Lyamtsev, Arifin Tahir, Ie Ling Tjam, Itasari Wiryanto

User Point of View

Albert is a student at the UW CSE. He was also an avid traveler who has been to various places in the world. Unfortunately, a bad experience that occurred two years ago has stopped him from traveling alone. One time, he went to Africa for fun, and bad luck occurred. He was in the middle of the desert when his camel suddenly stopped walking. He looked around but see no one. He was trapped in the middle of nowhere! Fortunately, after waiting for a full ten hour, someone passed by and helped him. After two years, Albert missed traveling; however, his fear hindered him from doing so. Yesterday, his friend Hendi introduced him to a product he just built for his 403 class, called eMatchBay. Upon knowing that, Albert suddenly went *blink* and went ahead to book a ticket for Bali, Indonesia. A month has passed and Albert is now in Bali. He wanted to try out the new program, so he took out his Pocket PC and open eMatchBay. He clicks on “Find Match” button, was directed to a page where he needs to fill in the criteria of the person he’s looking for, did so, then …. Voila! A picture of a pretty girl suddenly appeared (found a match). He contacted the girl by calling the number listed in her profile. That night, he spent the best night of his life.

Scenarios:

1. New Users

1) The user will be prompted with a welcome page

2) The user will have to click on the SIGNUP button

3) The user will have to fill in his information, ranging from hobbies to recreation. Everything else is optional so will be set by default as all null except biodata.

4) Once user has completed data-entry user’s information, the user will be prompted to a disclosure page.

5) The user will be prompted will a page disclosing all the risks involved, and eMatchBay will not be responsible for any harm done to the user.

6) After the user accepts the agreement, the user will be able to use eMatchBay to user’s heart content.

2. Returning User

1) The user starts the program.

2) A login window will prompt the user to login.

3) The user will be in one of the two scenario:

a. Profile found and password matches, user can continue to step 4.

b. Profile found but password incorrect. This will either mean user enters the incorrect password or the user has used the incorrect username and/or password. In either case, the user will be prompted to be login again for a maximum of 3 times, after which user has wait for 24 hours to try again.

c. Profile not found. This will mean that the user enters the incorrect username, or the user is a new visitor. If the user’s case is the former, user will be prompted to re-enter login information for a maximum of 3 times, after which user has wait for 24 hours to try again.

4) This will automatically set the user’s status to ONLINE if user’s profile is found. The user will be fed with a home page with all the relevant links or actions

a. To view user’s own information, user will choose “VIEW PROFILE”

i. This will return a page with his picture and his personal information without any editing mode.

b. To edit user’s own information, user will choose “EDIT PROFILE”

i. The user will see the information with editing mode.

ii. To edit anything, the user will just need to change user’s information, either using the textbox, dropdown menu, radio button, etc.

iii. The user will then be prompted to a page where the user will have the option to disclose or hide certain information.

iv. After the user completed all the changes, the user will then need to click “SUBMIT CHANGES” to send user’s information to the server to be updated.

v. From this time on, any retrieval of user’s information will be the updated information

c. Before finding a friend, you will need to setup a criteria of the person you are looking for. You can set up the criteria by choosing “SEARCH CRITERIA”

i. The user can choose from drop-down menu of several options ranging from hobbies, bio-data to recreation. All entries will initially be by default set to null.

ii. The user will most certainly be prompted to enter the biodata range of the person user expects to meet. Everything else is optional.

iii. After the user make all the necessary changes, user has to click “SUBMIT CHANGES” to update all the changes on the server.

iv. From now, if the user looks for a match, it will be based on the criteria set up by the user unless user changes it again.

d. To find a friend, user will choose “FIND MATCH”

i. The user will be checked whether the user has set the search criteria. If not, the user will go the part (c), else user proceeds.

ii. This will send a request to user’s GPS-like* system to locate his universal location.

iii. User’s location will be stored at the user’s program

iv. Then the program will send his location to the server to find the best 10 matches within user’s radius.

v. The matches will be placed inside the contact links.

vi. The user can click next or previous to browse through pictures.

vii. If the user is interested to contact the person, the user can use any communication means specified by the other user

viii. From here on, the user will be on user’ own risk.

e. To see past friends or recent matches, user will choose “VIEW CONTACTS”

i. If the user is looking for the past matches, the user will only be able to see the user’s username. This is because due to limited memory and processor power, we do not want to bombard user’s phone will information that will make the mobile device malfunction.

ii. If the user wants to find out more about that username, the user can choose “RETRIEVE INFO”, which will then prompt the mobile device to get the information off the server.
iii. The user can also change username to user’s preferable identifier without the other person knowing it. This may be useful if the user wants to remember a certain person in a certain way. To do this, user can choose “CHANGE USERNAME”. Warning: This will take up additional space because each friend in the contact list will be stored with two identifiers. One identifier that is recognized by one, and the other is the original username that is recognized by the server.
iv. The user can rate his or her previous contact by choosing “RATE YOUR FRIEND”, which is step (g) here.

v. The user can also ban certain matches; this will be further explained in step (h).

f. To see recent matches, the user will choose “VIEW MATCHES”

i. The user will be able to view the top 10 best matches according to user’s criteria.

ii. The user will then be able to click next or previous to browse through each profile.

iii. Once interested, the user can view the other party’s profile and contact that person*

iv. If not interested, the user can either discard it or just leave it in recent matches. Everything in the recent matches will be removed after one hour of each search.

g. To rate your friend, the user will choose “RATE YOUR FRIEND”

i. The user will choose the person the user wants to rate by selecting the username or identifier

ii. The user will then answer question about user’s match

iii. The user will then click submit to prompt the server to update the match’s rating

iv. From now on, every time the user’s match rating is requested, the new updated rating will appear.

h. To ban your friend, the user will choose “BAN YOUR MATCH”

i. The user will choose the person’s username or identifier

ii. The user will be prompted to make sure the user has met the correct selection.

iii. The user will have to click “YES” to be processed, or the ban is dropped.

iv. After clicking “YES”, that match’s username will be entered at user’s ban’s list.

i. To communicate with your new match, the user will double click at the match username or identifier

i. A new window will open.

ii. The user can just communicate just like any instant messaging system.

Specification Document

From the point of view of the product administrator, this application consists of three parts: the database, the server, and a collection of client entities (explained more in the architecture documentation), whereas the user only sees the front part, the client side, of the application. The service provided by the server side amounts to inserting and updating data in a database, and providing those data on request after verifying user access privileges (for example, if the current user is banned by the intended user or not). The server provides web services that the client can invoke, with parameters passed that are usually values to be inserted or updated into the user’s database entry. After any such updating of the user profile, future viewings of this user’s profile should reflect that; although it is not mission-critical for the application to have some updates fail, too many failures can surely tar our reliability in the user’s eyes.

Below we enumerate the use scenarios of this program’s functionality, divided into the prerequisites, what needs to be true for this functionality to be usable, and the results, which is what happens if the prerequisites are fulfilled.

Use Scenario

1. New User Sign Up

Prerequisites:

· User owns a copy of the eMatchBay client side application.

· After turning on the machine, user supplies, either from a mobile device or a remote computer, their personal data (name, age, username, password, gender, sexual orientation, e-mail, marital status).

· Some constraints will be imposed on these inputs (for example, the password must be at least 8 characters long).

 Results:

· User calls a web service that inserts a new entry in the table of user profiles. This web service asks as parameters the username, password, real name, address, phone number, etc; personal information

· The database generates a unique ID number for this user.

· If information storage fails, user must be prompted to re-input the data.

 2. User Login

 Prerequisites:

· User must have signed up with eMatchBay.

· User has his/her username and password and inputs it. Client side calls the web service that does the login authentication.

Results:

 - User’s username and password is verified against the data in the database.

 - If profile is found and password matches, user is granted access. If not, an error message is sent back.

All scenarios after this assumes that the user has logged in succesfully.

3. User Updates Profile

Prerequisites:

· Once logged in, the user must be able to update their profile at any time (barring system problems, of course). User presses the “EDIT PROFILE” button.

· The client side calls the web service that retrieves the user profile, so server retrieves those attributes and returns them to the client to be displayed in mutable fields.

· If user decides to change his/her profile then the client side calls the web service that updates the user profile, passing as parameters all fields in the profile, which includes personal data and matching-relevant information such as sports, recreation, hobbies, favorites, and occupation.

· The user must also specify whether or not certain categories will be displayed to other users (to allow privacy control).

 Result:

· Server receives the new profile as a parameter. The attributes of the old profile is overwritten with the new profile, tagging attributes appropriately (whether to be displayed or not).

· Future profile views must reflect these changes.

4. User sets the search criteria

Prerequisite:

 - The client side calls the web service that retrieves the user’s search criteria, so server retrieves those attributes and returns them to the client to be displayed in mutable fields.

 - If user has never set a search criteria before, null strings are returned. Otherwise the current search criterias are returned to be displayed.

 - If user decides to change the search criteria, the client calls the web service that updates the search criteria. The search criteria includes age, hobby, occupation, etc, and the limit to the number of matches.

Results:

 - Server’s web service receives the new search criteria as a parameter. The old search criterias are overwriten with the new one.

 - Any match-finds from now will use the new match criteria.

5. User searches for a match

Prerequisite:

· User must have submitted a search criteria.

· User must specify his/her location to the server using the webservice. We plan to have it in the form of a global {x, y} coordinate.

· The server then queries the database to find all users within a certain radius of the current user which doesn’t ban the current user, doesn’t opt to only give access to his/her profile to people in his/her friend list.

Result:

· After the server retrieves the profiles of these other users, it calculates the best matches with the user’s search criteria.

· Server sends back the top x matching user profiles, with x being the limit set on the number of matches. First it filter the profiles to include only those attributes that the corresponding user has opted to be displayed

· If another user is ON, current user will be able to add user to friend list, or send static messages. If the other user is OFF, current user will not be able to add the user to the friend list.

· As explained in the part “User views matches” above from the user perspective, this data will be kept at the client side until the user asks to find another match set, in which this process repeats.

6. User adds another user to his/her friend list

Prerequisite:

 - The user must have found the other user through the matching

 - The user must know either the username or the e-mail address of the other user.

 - The other user must have his/her status set to “on”, and must not be in the friend

 list of the current user.

 - The other user is found through the match finding function, and when prompted,

 accepts the request to add him/her to the friend list.

Result:

 - The other user receives a request, and has the chance to

 either accept or reject the request.

 - If it is accepted, the other user’s ID will be entered into the current user’s

 contact list attribute in his/her database entry, and the current user will be sent a

 notification.

 - If it is rejected, then nothing will be entered into the database and no notification is

 sent to the current user.

 7. User rates other users in his/her friend list

Prerequisites:

· The other user must be contained in the current user’s friend list. This is enforced by displaying only the friend list in the list of people to rate in the client side. The scoring is open, so the other user will not be able to reject any score.

Results:

· the current user will be prompted to a series of questions and will be asked to provide a final score that will be entered into the database.

· There will also be an option to enter a textual “testimonial” of the other user which will not count toward the scoring. This score will be calculated into one number, a running score, which is the average of the scores received so far.

· This new score should be displayed along with the other user’s profile the next time some other user asks requests it.

 8. User sends static message to other user

 Prerequisites:

· User can send a static message to any other users in his/her friend list, no matter if those other users are on or off. Other non-friend users must be on to receive static messages from the current user.

Results:

· After user types in the messages and submits it through a web service, the server receives it and first queries if the target user if ON or OFF.

· If target user is ON then it sends message directly to client app. If target user is OFF the message is stored in the user’s inbox table in the database. The next time user is online and checks his/her inbox, this message should be displayed.

 9. User views other user’s profile

 Prerequisites:

· For viewing user’s own profile, user must already be signed in and have set his/her profile. For viewing other’s profile, user must either have the other user on his/her friend list or detect that other user in the match finding process. This requires that the other user has profile viewing permission set to “all users”.

 Results:

· Server receives request for a user profile through a web service call. Server fetches the profile from the database and returns it to the client.

 10. User bans another user

Prerequisites:

· Either the other user was in the current user’s friend list, or he/she was included in a match, or he/she sent a message to the current user.

 Results:

· Client side calls a web service that takes the ID of the person to be banned. The other user’s ID is entered into a list of banned users by this user in the database.

 * Since GPS is not available, we will be uploading map-coordinates to locate users

