
CSE 403 - Spring 2003 Homework 5

Page 1 of 3

Homework 5

The purpose of this homework is twofold:

1. Complete the detailed planning and design for the Lifecycle Architecture milestone.
2. Begin the construction phase of the project, resulting in an alpha release of the product.

This work will be presented as the Life Cycle Architecture milestone (LCA) along with a demo of
the alpha release for your product in the LCA review on May 9th. Refer to the lectures on the LCA
review and the construction phase of the project, as well as the various reference papers and web
pages, for background material on the content of this review.

The homework is due before midnight, Thursday May 8th. One of the team members should turn
in all the deliverables. On Friday, May 9th, there will be no class lecture. We will schedule 20-
minute sessions throughout the day for LCA reviews with each team.

Deliverables

Much of the material for this review is an elaboration of the material that was written for the LCO
reviews. Feel free to draw on that as a starting point. However, remember that you are defining the
detailed architecture now, and so there should be fewer options and open items, and more decisions
and detail.

1. An overview presentation. A set of Powerpoint presentation slides that summarizes the LCA
elements for your product.

2. Specification document. This is the final version of the document that you produced earlier. It
should accurately reflect the product you are building, from the point of view of both the
client user and the server administrator.

3. Architecture document. Detailed definition of the system and software components. See the
lectures and the attached extract from Software Architecture by Garlan for more information.

4. Task assignments. Task descriptions for the project and the specific team member responsible
for each task. This is an update of the task list you provided earlier and should reflect your
actual plan of work.

5. An alpha release of your client software, and an alpha release of your server software. This is
a very early version of your product. It should illustrate the most important connectivity and
functionality features, but is not expected to be the complete application. There should be
four zip files total: one binary distribution and one source distribution for the client side and
one binary distribution and one source distribution for the server side. There should be clearly
identified release notes in each file describing how to install and run the software.

6. A demonstration of your application. This is a demonstration of the alpha release, not an
additional turnin item. You will demonstrate your application in the LCA review on May 9th.

CSE 403 - Spring 2003 Homework 5

Page 2 of 3

Architectural Description Languages. Extracted from Garlan.

The first insight is that good architectural description benefits from multiple views, each view
capturing some aspect of the system. Two of the more important classes of view are:

• Code-oriented views, which describe how the software is organized into modules, and what
kinds of implementation dependencies exist between those modules. Class diagrams, layered
diagrams, and work breakdown structures are examples of this class of view; and

• Execution-oriented views, which describe how the system appears at run time, typically
providing one or more snapshots of a system in action. These views are useful for documenting
and analyzing execution properties such as performance, reliability, and security.

A second insight is that architectural description of execution-oriented views, as embodied in most
of the ADLs mentioned earlier, requires the ability to model the following as first class design
entities:

• Components represent the computational elements and data stores of a system. Intuitively, they
correspond to the boxes in box-and-line descriptions of software architectures. Examples of
components include clients, servers, filters, blackboards, and databases. Components may have
multiple interfaces, each interface defining a point of interaction between a component and its
environment. A component may have several interfaces of the same type (e.g., a server may
have several active http connections).

• Connectors represent interactions among components. They provide the “glue” for architectural
designs, and correspond to the lines in box-and-line descriptions. From a run-time perspective,
connectors mediate the communication and coordination activities among components.
Examples include simple forms of interaction, such as pipes, procedure call, and event
broadcast. Connectors may also represent complex interactions, such as a client-server protocol
or a SQL link between a database and an application. Connectors have interfaces that define the
roles played by the participants in the interaction.

• Systems represent graphs of components and connectors. In general, systems may be
hierarchical: components and connectors may represent subsystems that have their own internal
architectures. We will refer to these as representations. When a system or part of a system has a
representation, it is also necessary to explain the mapping between the internal and external
interfaces.

• Properties represent additional information (beyond structure) about the parts of an architectural
description. Although the properties that can be expressed by different ADLs vary considerably,
typically they are used to represent anticipated or required extra-functional aspects of an
architectural design. For example, some ADLs allow one to calculate system throughput and
latency based on performance estimates of the constituent components and connectors. In
general, it is desirable to be able to associate properties with any architectural element in a
description (components, connectors, systems, and their interfaces). For example, a property of
an interface might describe an interaction protocol.

CSE 403 - Spring 2003 Homework 5

Page 3 of 3

References

Anchoring the Software Process, Barry Boehm, USC
http://citeseer.nj.nec.com/boehm95anchoring.html

Painless Functional Specifications, Joel Spolsky
http://www.joelonsoftware.com/articles/fog0000000036.html

Software Architecture, David Garlan
http://www-2.cs.cmu.edu/afs/cs/project/able/ftp/encycSE2001/encyclopedia-dist.pdf

