
1

CSE 403
Lecture 23

Complexity Theory and Software
Engineering

Announcement

n Project submission
n Project demos (Wednesday)
n Exam review (Monday)
n Exam format

n Short answer

Theory of Computation

n What can complexity theory tell us
about software engineering?

Today's result

n Syntactic measures of program
complexity
n Thm:

n Automatic evaluation of program
correctness
n Thm:

n Evaluation of finite state systems
n Thm:

Software metrics

n Is there a meaningful way of evaluating
the quality of a program.

n We would like to have ways to look at
source code, and evaluate "simplicity"
or "risk of bugs"

Straw men

n The fewer loops the better
n Unnested loops are better than nested

loops

2

Matrix multiplication

MatrixMult(A, B, C){ // A x B = C
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++){
int t = 0;

for (int k = 0; k < n; k++)
t += A[i][k]*B[k][j];

C[i][j] = t;
}

}

Reducing complexity

n Can the level of nesting by reduced?
n Can this be implemented with a single

loop?
n How about with no loop (straight line

code)

n Function calls not allowed

Loop removal theorem

n Any program can be rewritten to have
just a single loop and no function calls

n First complexity theory ideas
n Convert a program to a simple

intermediate language
n Write an interpreter for the program that

only has a single loop

Interpreter

while (pc != stop){
if (pc == 1)

Execute statement 1
if (pc == 2)

Execute statement 2
. . .

}

Interpretation of the result

n Thm: Any program can be converted to
a single loop program

n Simplicity is not related to depth of
loops, number of loops, number of
function calls

n Important properties of programs are
semantic, not syntactic

The halting problem

n It is impossible to write a program
which can always determine whether or
not an input program halts

n Philosophical result – limits on power of
computation

3

Halting Problem

n Suppose we have a program Halt(P, y)
which return true if P halts on input y
and returns false otherwise

n Define
Halt’(P) = if Halt(P , P) then loop else return

Q is the program for Halt’(P)

Does Q(Q) Halt?

Q(P) runs forever if P halts on input P
Q(P) halts if P runs forever on input P

If Q(Q) halts, then Q(Q) runs forever
If Q(Q) runs forever, then Q(Q) halts

So what????

n Testing software is undecidable
n If we can’t test does it halt, we can’t test if it

computes a particular value

n Testing if a certain line of code is reachable is
undecidable (because the line could be the return
statement)

n Testing if a variable is always initialized is
undecidable (because we might have a statement
that can reach it without initialization, and then
test to see if that statement is reachable)

Finite state systems

n If things are finite, they become much easier
n Reachability in finite automata
n Equivalence of finite automata
n Evaluation of temporal formulas for finite

state systems
n IF A THEN EVENTUALLY B
n IF (A FOLLOWS B) THEN (ALWAYS C UNTIL D)

Pseudo Finite Systems

n However, finite can be very large
n The state space can be much larger than the

system description
n Add algorithms can be very inefficient

n Double Exponential, Triple Exponential

n There is a large amount of interesting
research in
n Representing infinite spaces by finite spaces
n Applying finite state methods to software

