
1

Quality Assurance:
Test Development &

Execution

Ian S. King
Test Development Lead

Windows CE Base OS Team
Microsoft Corporation

Implementing Testing

Test Schedule

l Phases of testing
l Unit testing (may be done by developers)
l Component testing
l Integration testing
l System testing
l Usability testing

What makes a good tester?

l Analytical
l Ask the right questions
l Develop experiments to get answers

l Methodical
l Follow experimental procedures precisely
l Document observed behaviors, their precursors

and environment
l Brutally honest
l You can’t argue with the data

How do test engineers fail?

l Desire to “make it work”
l Impartial judge, not “handyman”

l Trust in opinion or expertise
l Trust no one – the truth (data) is in there

l Failure to follow defined test procedure
l How did we get here?

l Failure to document the data
l Failure to believe the data

Testability

l Can all of the feature’s code paths be exercised
through APIs, events/messages, etc.?
l Unreachable internal states

l Can the feature’s behavior be programmatically
verified?

l Is the feature too complex to test?
l Consider configurations, locales, etc.

l Can the feature be tested timely with available
resources?
l Long test latency = late discovery of faults

2

What color is your box?

l Black box testing
l Treats the SUT as atomic
l Study the gazinta’s and gozouta’s
l Best simulates the customer experience

l White box testing
l Examine the SUT internals
l Trace data flow directly (in the debugger)
l Bug report contains more detail on source of defect
l May obscure timing problems (race conditions)

Designing Good Tests

l Well-defined inputs and outputs
l Consider environment as inputs
l Consider ‘side effects’ as outputs

l Clearly defined initial conditions
l Clearly described expected behavior
l Specific – small granularity provides greater

precision in analysis
l Test must be at least as verifiable as SUT

Types of Test Cases

l Valid cases
l What should work?

l Invalid cases
l Ariane V – data conversion error

(http://www.cs.york.ac.uk/hise/safety-critical-
archive/1996/0055.html)

l Boundary conditions
l Fails in September?
l Null input

l Error conditions
l Distinct from invalid input

Manual Testing

l Definition: test that requires direct human
intervention with SUT

l Necessary when:
l GUI is present
l Behavior is premised on physical activity (e.g.

card insertion)

l Advisable when:
l Automation is more complex than SUT
l SUT is changing rapidly (early development)

Automated Testing

l Good: replaces manual testing
l Better: performs tests difficult for manual

testing (e.g. timing related issues)
l Best: enables other types of testing

(regression, perf, stress, lifetime)
l Risks:
l Time investment to write automated tests
l Tests may need to change when features change

Types of Automation Tools:
Record/Playback

l Record “proper” run through test procedure
(inputs and outputs)

l Play back inputs, compare outputs with
recorded values

l Advantage: requires little expertise
l Disadvantage: little flexibility - easily

invalidated by product change
l Disadvantage: update requires manual

involvement

3

Types of Automation Tools:
Scripted Record/Playback

l Fundamentally same as simple
record/playback

l Record of inputs/outputs during manual test
input is converted to script

l Advantage: existing tests can be maintained
as programs

l Disadvantage: requires more expertise
l Disadvantage: fundamental changes can

ripple through MANY scripts

Types of Automation Tools:
Script Harness

l Tests are programmed as modules, then run
by harness

l Harness provides control and reporting
l Advantage: tests can be very flexible
l Disadvantage: requires considerable

expertise and abstract process

Types of Automation Tools:
Verb-Based Scripting

l Module is programmed to invoke product
behavior at low level – associated with ‘verb’

l Tests are designed using defined set of verbs
l Advantage: great flexibility
l Advantage: changes are usually localized to

a given verb
l Disadvantage: requires considerable

expertise and abstract process

Test Corpus

l Body of data that generates known results
l Can be obtained from
l Real world – demonstrates customer experience
l Test generator – more deterministic

l Caveats
l Bias in data generation
l Don’t share test corpus with developers!

Instrumented Code:
Test Hooks

l Code that enables non-invasive testing
l Code remains in shipping product
l May be enabled through
l Special API
l Special argument or argument value
l Registry value or environment variable

l Example: Windows CE IOCTLs
l Risk: silly customers….

Instrumented Code:
Diagnostic Compilers

l Creates ‘instrumented’ SUT for testing
l Profiling – where does the time go?
l Code coverage – what code was touched?
l Really evaluates testing, NOT code quality

l Syntax/coding style – discover bad coding
l lint, the original syntax checker

l Complexity
l Very esoteric, often disputed (religiously)
l Example: function point counting

4

Instrumented platforms

l Example: App Verifier
l Supports ‘shims’ to instrument standard system

calls such as memory allocation
l Tracks all activity, reports errors such as

unreclaimed allocations, multiple frees, use of
freed memory, etc.

l Win32 includes ‘hooks’ for platform
instrumentation

Environment Management
Tools

l Predictably simulate real-world situations
l MemHog
l DiskHog
l Data Channel Simulator

Test Monkeys

l Generate random input, watch for crash or
hang

l Typically, ‘hooks’ UI through message queue
l Primarily to catch “local minima” in state

space (logic “dead ends”)
l Useless unless state at time of failure is well

preserved!

Finding and Managing Bugs

What is a bug?

l Formally, a “software defect”
l SUT fails to perform to spec
l SUT causes something else to fail
l SUT functions, but does not satisfy usability

criteria
l If the SUT works to spec and someone wants

it changed, that’s a feature request

What are the contents of a bug
report?

l Repro steps – how did you cause the failure?
l Observed result – what did it do?
l Expected result – what should it have done?
l Any collateral information: return

values/output, debugger, etc.
l Environment
l Test platforms must be reproducible
l “It doesn’t do it on my machine”

5

Ranking bugs

l Severity
l Sev 1: crash, hang, data

loss
l Sev 2: blocks feature, no

workaround
l Sev 3: blocks feature,

workaround available
l Sev 4: trivial (e.g.

cosmetic)

l Priority
l Pri 1: Fix immediately
l Pri 2: Fix before next

release outside team
l Pri 3: Fix before ship
l Pri 4: Fix if nothing better

to do ☺

A Bug’s Life

Regression Testing

l Good: rerun the test that failed
l Or write a test for what you missed

l Better: rerun related tests (e.g. component
level)

l Best: rerun all product tests
l Automation can make this feasible!

Tracking Bugs

l Raw bug count
l Slope is useful predictor

l Ratio by ranking
l How bad are the bugs we’re finding?

l Find rate vs. fix rate
l One step forward, two back?

l Management choices
l Load balancing
l Review of development quality

When can I ship?

l Test coverage sufficient
l Bug slope, find vs. fix lead to convergence
l Severity mix is primarily low-sev
l Priority mix is primarily low-pri

To beta, or not to beta

l Quality bar for beta release: features mostly
work if you use them right

l Pro:
l Get early customer feedback on design
l Real-world workflows find many important bugs

l Con:
l Do you have time to incorporate beta feedback?
l A beta release takes time and resources

6

Developer Preview

l Different quality bar than beta
l Goals
l Review of feature set
l Review of API set by technical consumers

l Customer experience
l Known conflicts with previous version
l Known defects, even crashing bugs
l Setup/uninstall not completed

