
1

Quality Assurance:
Test Development &

Execution

Ian S. King
Test Development Lead

Windows CE Base OS Team
Microsoft Corporation

Developing Test Strategy

Elements of Test Strategy

l Test specification
l Test plan
l Test harness/architecture
l Test case generation
l Test schedule

Where is your focus?

l The customer
l The customer
l The customer
l The customer
l The customer
l The customer
l The customer
l Schedule and budget

Requirements feed into test
design

l What factors are important to the customer?
l Reliability vs. security
l Reliability vs. performance
l Features vs. reliability
l Cost vs. ?

l What are the customer’s expectations?
l How will the customer use the software?

Test Specifications

l What questions do I want to answer about this
code? Think of this as experiment design

l In what dimensions will I ask these questions?
l Functionality
l Security
l Reliability
l Performance
l Scalability
l Manageability

2

Test specification: goals

l Design issues
l Do you understand the

design and goals?
l Is the design logically

consistent?
l Is the design testable?

l Implementation issues
l Is the implementation

logically consistent?
l Have you addressed

potential defects arising
from implementation?

Test specification: example

l CreateFile method
l Should return valid, unique handle for
l initial ‘open’ for appropriate resource
l subsequent calls for shareable resource
l for files, should create file if it doesn’t exist

l Should return NULL handle and set error indicator if
resource is
l nonexistent device
l inappropriate for ‘open’ action
l in use and not shareable
l unavailable because of error condition (e.g. no disk space)

l Must recognize valid forms of resource name
l Filename, device, ?

Methods of delivering software

l Enterprise/data center
l Traditional: hardware vendor was software vendor
l Support usually explicit and structured

l Embedded systems
l Software is shipped as built-in component
l Often doesn’t “look like” computing technology

l “Shrink wrap”
l Software is often installed by end user
l Goal: minimal involvement post-sale

l Online ‘update’ - subscription
l Minimal user involvement – goal is transparency

Challenges:
Enterprise/Data Center

l Usually requires 24x7 availability
l Full system test may be prohibitively

expensive – a second data center?
l Management is a priority
l Predictive data to avoid failure
l Diagnostic data to quickly diagnose failure
l Rollback/restart to recover from failure

Challenges:
Embedded Systems

l Software may be “hardwired” (e.g. mask
ROM)

l End user is not prepared for upgrade
scenarios
l Field service or product return may be necessary

l End user does not see hardware vs. software
l End user may not see software at all
l Who wrote your fuel injection software?

Challenges:
Shrink Wrap Software

l Software compatibility matrix
l Operating systems
l Dependencies (expected and unexpected)
l Conflicts with other software

l Hardware configuration issues
l Dependencies (expected and unexpected)
l Resource conflicts

l Completely unrelated weirdness
l N.B.: there’s no one “on the ground”

3

Trimming the matrix:
risk analysis in test design

l It’s a combinatorial impossibility to test it all
l Example: eight modules that can be combined
l One hour per test of each combination
l Twenty person-years (40 hr weeks, 2 wks vacation)

l Evaluate test areas and prioritize based on:
l Customer priorities
l Estimated customer impact
l Cost of test
l Cost of potential field service

Test Plans

l How will I ask my questions? Think of this as the
“Methods” section

l Understand domain and range
l Establish equivalence classes
l Address domain classes
l Valid cases
l Invalid cases
l Boundary conditions
l Error conditions
l Fault tolerance/stress/performance

Test plan: goals

l Enables development of tests
l Proof of testability – if you can’t design it, you

can’t do it
l Review: what did you miss?

Test plan: example
l CreateFile method

l Valid cases
l execute for each resource supporting ‘open’ action

§ opening existing device
§ opening existing file
§ opening (creating) nonexistent file

l execute for each such resource that supports sharing
§ multiple method calls in separate threads/processes
§ multiple method calls in single thread/process

l Invalid cases
l nonexistent device
l file path does not exist
l in use and not shareable

l Error cases
l insufficient disk space
l invalid form of name
l permissions violation

l Boundary cases
l e.g. execute to/past system limit on open device handles
l device name at/past name length limit (MAXPATH)

l Fault tolerance
l execute on failed/corrupted filesystem
l execute on failed but present device

Performance testing

l Test for performance behavior
l Does it meet requirements?
l Customer requirements
l Definitional requirements (e.g. Ethernet)

l Test for resource utilization
l Understand resource requirements

l Test performance early
l Avoid costly redesign to meet performance

requirements

Security Testing

l Is data/access safe from those who should
not have it?

l Is data/access available to those who should
have it?

l How is privilege granted/revoked?
l Is the system safe from unauthorized control?
l Example: denial of service

l Collateral data that compromises security
l Example: network topology

4

Stress testing

l Working stress: sustained operation at or
near maximum capability

l Goal: resource leak detection
l Breaking stress: operation beyond expected

maximum capability
l Goal: understand failure scenario(s)
l “Failing safe” vs. unrecoverable failure or data

loss

Globalization

l Localization
l UI in the customer’s language
l German overruns the buffers
l Japanese tests extended character sets

l Globalization
l Data in the customer’s language
l Non-US values ($ vs. Euro, ips vs. cgs)
l Mars Global Surveyor: mixed metric and SAE

Test Cases

l Actual “how to” for individual tests
l Expected results
l One level deeper than the Test Plan
l Automated or manual?
l Environmental/platform variables

Test case: example

l CreateFile method
l Valid cases
l English
§ open existing disk file with arbitrary name and full path, file

permissions allowing access
§ create directory ‘c:\foo’
§ copy file ‘bar’ to directory ‘c:\foo’ from test server;

permissions are ‘Everyone: full access’
§ execute CreateFile(‘c:foo\bar’, etc.)
§ expected: non-null handle returned

Test Harness/Architecture

l Test automation is nearly always worth the
time and expense

l How to automate?
l Commercial harnesses
l Roll-your-own (TUX)
l Record/replay tools
l Scripted harness

l Logging/Evaluation

Test Schedule

l Phases of testing
l Unit testing (may be done by developers)
l Component testing
l Integration testing
l System testing

l Dependencies – when are features ready?
l Use of stubs and harnesses

l When are tests ready?
l Automation requires lead time

l The long pole – how long does a test pass take?

5

Where The Wild Things Are:
Challenges and Pitfalls

l “Everyone knows” – hallway design
l “We won’t know until we get there”
l “I don’t have time to write docs”
l Feature creep/design “bugs”
l Dependency on external groups

