Developing Test Strategy	

Quality Assurance: Test Development & Execution

Test Development Lead Windows CE Base OS Team Microsoft Corporation

lan S. King

Elements of Test Strategy

- Test specification
- Test plan
- Test harness/architecture
- Test case generation
- Test schedule

Requirements feed into test design

- What factors are important to the customer?
 - Reliability vs. security
 - Reliability vs. performance
 - Features vs. reliability
 - Cost vs. ?
- What are the customer's expectations?
- How will the customer use the software?

ScalabilityManageability

Test specification: goals

- Design issuesDo you understand the
- design and goals?Is the design logically
- onsistent?
- Is the design testable?

- Implementation issues
- Is the implementation logically consistent? Have you addressed
- potential defects arising from implementation?

• Filename, device, ?

Methods of delivering software

- Enterprise/data center
 Traditional: hardware vendor was software vendor
- Support usually explicit and structured
 Embedded systems
- Software is shipped as built-in component
 Often doesn't "look like" computing technology
- "Shrink wrap"
- Software is often installed by end user
 Goal: minimal involvement post-sale
- Online 'update' subscription
- Minimal user involvement goal is transparency

Challenges: Enterprise/Data Center

- Usually requires 24x7 availability
- Full system test may be prohibitively expensive a second data center?
- Management is a priority
 - Predictive data to avoid failure
 - Diagnostic data to quickly diagnose failure
 - Rollback/restart to recover from failure

Challenges: Embedded Systems

- Software may be "hardwired" (e.g. mask ROM)
- End user is not prepared for upgrade scenarios
- Field service or product return may be necessary
- End user does not see hardware vs. software
- End user may not see software at all
 Who wrote your fuel injection software?

Challenges: Shrink Wrap Software

- Software compatibility matrix
 - Operating systems
 - Dependencies (expected and unexpected)
 - Conflicts with other software
- Hardware configuration issues
- Dependencies (expected and unexpected)
- Resource conflicts
- Completely unrelated weirdness
- N.B.: there's no one "on the ground"

Trimming the matrix: risk analysis in test design

- It's a combinatorial impossibility to test it all
 - Example: eight modules that can be combined
 - One hour per test of each combination
 - Twenty person-years (40 hr weeks, 2 wks vacation)
- Evaluate test areas and prioritize based on:
 - Customer priorities
 - Estimated customer impact
 - Cost of test
 - Cost of potential field service

Test Plans

- How will I ask my questions? Think of this as the "Methods" section
- Understand domain and range
- Establish equivalence classes
- Address domain classes
- Valid cases
- Invalid cases
- Boundary conditionsError conditions
- Fault tolerance/stress/performance

Test plan: goals

- Enables development of tests
- Proof of testability if you can't design it, you can't do it
- Review: what did you miss?

Performance testing

- Test for performance behavior
 - Does it meet requirements?
 - Customer requirements
 - Definitional requirements (e.g. Ethernet)
- Test for resource utilization
- Understand resource requirements
- Test performance <u>early</u>
 - Avoid costly redesign to meet performance requirements

- Is data/access available to those who should have it?
- How is privilege granted/revoked?
- Is the system safe from unauthorized control?
 Example: denial of service
- Collateral data that compromises security
 Example: network topology

Stress testing

- Working stress: sustained operation at or near maximum capability
- Goal: resource leak detection
- Breaking stress: operation beyond expected maximum capability
- Goal: understand failure scenario(s) • "Failing safe" vs. unrecoverable failure or data loss

Globalization

- Localization
 - UI in the customer's language
 - German overruns the buffers
 - Japanese tests extended character sets
- Globalization
 - Data in the customer's language
 - Non-US values (\$ vs. Euro, ips vs. cgs)
 - Mars Global Surveyor: mixed metric and SAE

Test Cases

- Expected results
- One level deeper than the Test Plan
- Automated or manual?
- Environmental/platform variables

Test case: example CreateFile method Valid cases English open existing disk file with arbitrary name and full path, file permissions allowing access create directory 'c:\foo' copy file 'bar' to directory 'c:\foo' from test server; permissions are 'Everyone: full access' execute CreateFile('c:foo\bar', etc.) expected: non-null handle returned

Test Harness/Architecture

- Test automation is nearly always worth the time and expense
- How to automate?
 - Commercial harnesses
 - Roll-your-own (TUX)
 - Record/replay tools
 - Scripted harness
- Logging/Evaluation

Test Schedule Phases of testing • Unit testing (may be done by developers)

- Component testing
- Integration testing System testing
- Dependencies when are features ready? • Use of stubs and harnesses
- When are tests ready?
- Automation requires lead time
- The long pole how long does a test pass take?

Where The Wild Things Are: Challenges and Pitfalls

- "Everyone knows" hallway design
- "We won't know until we get there"
- "I don't have time to write docs"
- Feature creep/design "bugs"
- Dependency on external groups