
1

CSE 403
Lecture 15

Design Patterns (cont.) and
Coding

Experts vs. Novices

n Experience
n Higher level thought

n Chunking, Idioms, Techniques, Examples

n Design patterns
n An attempt to capture the expertise of OO

software designers

Case study

n Lexi Editor (Calder)
n Document structure

n Composition pattern
n Flyweight pattern

n Formatting
n Strategy pattern

n Embellishing UI
n Decorator pattern

Lexi patterns

n Multiple look and feel standards
n Abstract factory pattern

n Multiple window systems
n Bridge pattern

n User operations
n Command pattern

n Spelling checking and hyphenation
n Iterator and Visitor pattern

UI Embellishment

n Add border or scrollbar to component
n MonoGlyph extends Glyph
n Border extends MonoGlyph
n ScrollBar extends MonoGlyph

n Decorator Pattern

Multiple look and feel
standards

n Motif menus, Mac menus
n GuiFactory guiFactory = new MotifFactory();
n ScrollBar sb = guiFactory.CreateScrollBar();
n Button bu = guiFactory.CreateButton();

n Abstract Factory Pattern

2

Supporting Multiple Window
Systems

n Window Class Hierarchy
n WindowImp Class Hierarchy

n Extend WindowImp for each different
system

n Avoid polluting Window Class with system
dependencies

n Bridge Pattern
n Link between Window and WindowImp

User commands and spell
check/hyphenation

n User commands
n Command Pattern

n Includes Undo functionality

n Spell check and hyphenation
n Iterate over words of document
n Iterator Pattern and Visitor pattern

Classification of patterns
n Creational

n Abstract factory, builder,
factory method, prototype,
singleton

n Structural
n Adapter, bridge, composite,

decorator, façade, flyweight,
proxy

n Behavioral
n Chain of responsibility,

command, interpreter, iterator,
mediator, memento, observer,
state, strategy, template
method, visitor

Original GoF patterns

Code

n “Where the rubber meets the road”
n The code defines what actually happens

when you run a program
n No matter what the requirements are, no

matter what the design is, no matter what
the documentation says

Guidelines

n In general, you can’t generalize about
the best way to program

n In theory, there is no difference
between theory and practice

n A good programmer will write good
programs in any language; a bad
programmer will write bad programs in
any language

The problem

n In any language, there are many ways
to do effectively the same thing
n if ((a==b) && (c==d)) …
n if (a==b) if (c==d) ..

n Tons of examples
n Error codes via return values or

parameters?
n Null terminated strings vs. explicit lengths
n for vs. while vs. repeat loops

...

3

The question

n When you have lots of choices of how to do
things, how do you choose?

n Can you make better and worse choices?
n Absolutely

n Why is this true?
n Sometimes equivalent pieces of code aren’t

equivalent, but in subtle ways
n When someone (maybe you) reads it later on,

some approaches may be more clear

IOCCC

nInternational Obfuscated C Code Contest
n http://www.ioccc.org/

int i;main(){for(;i["]<i;++i){ --i;}"];read('-'-'-',i+++"hell\

o, world!\n",'/'/'/'));}read(j,i,p){write(j/p+p,i ---j,i/i);}

A better example ☺
n #include <stdio.h>

char *T="IeJKLMaYQCE]jbZRskc[SldU^V \\X\\|/_<[<:90! \"$434-./2>]s",
K[3][1000],* F,x,A,*M[2],*J,r[4],* g,N,Y,*Q,W,*k,q,D;X(){r [r [r[3]=M[1 -
(x&1)][*r=W,1],2]=*Q+2,1]=x+1+Y,*g++=((((x& 7) -1)>>1)-
1)?*r:r[x >>3],(++x<* r)&&X();}E(){A||X(x=0,g =J),x=7&(*T>>A*3),J[(x[F]-
W-x)^A*7]=Q[x&3]^A*(*M)[2 +(x&1)],g=J+((x[k]-W)^A*7)-
A,g[1]=(*M)[*g=M[T+=A ,1][x&1],x&1],(A^=1)&&(E(),J+= W);}l(){E(--q&&l
());}B(){*J&&B((D=*J,Q[2]<D&&D<k[1]&&(*g++=1), !(D -W&&D-9&&D-
10&&D-13)&&(!*r&&(*g++=0) ,* r=1)||64<D&&D<91&&(*r=0,*g++=D-
63)||D >= 97&&D<123&&(*r=0,*g++=D-95)||!(D-k[3]
)&&(*r=0,*g++=12)||D>k[3]&&D<=k[1] -1&&(*r=0,*g++=D -47),J++));}j(
){ putchar(A);}b(){(j(A =(*K)[D* W+ r[2]* Y+x]),++x <Y)&&b();}t ()
{(j((b(D=q[g],x =0),A=W)), ++q<(*(r+1)<Y?*(r+1): Y))&&t();}R(){(A =(t(q=
0),'\n'),j(),++r [2]<N)&&R();}O() {(j((r[2]=0,R())),r[1]-=q) && O(g -=-q) ;}
C(){(J= gets (K [1]))&&C((B(g=K[2]),*r=!(!*r&&(*g++=0)),(*r)[r]=g -
K[2],g=K[2],r[1]&& O()));;} main (){C ((l((J=(A=0) [K], A[M] =(F= (k=(
M[!A]=(Q =T+(q=(Y =(W= 32)- (N=4)))) +N)+ 2)+7)+7)),Y= N<<(*r=! -
A)));;}

Coding standards

n Many projects have standards to which every
member is supposed to adhere
n These are almost always written standards

n Adherence is usually an informal issue, but
sometimes is done through inspections and in
some cases using compliance checking tools

n Goals include making it faster to write code
(fewer decisions) and making it easier to read
code (less context switching)

Language-specific

n Coding standards are almost always
language-specific

n Many of the examples (today) are in C/C++
n GNU’s coding standards, Writing Solid Code

n In some cases, a better language would
alleviate the need for the standard

n But standards are always useful, regardless
of language

Standards can cover...

n Layout guidelines
n Parameters, variable declarations, etc.
n Indentation (spaces, tabs, etc.)
n Long expressions

n Naming schemes
n Commenting guidelines
n Restrictions on usage of the language

4

More naming

n Many projects have naming conventions,
even if not as strict at Hungarian
n Do your variables start with a capital letter?

n Do you separate sub-words with capital letters or
underscores or something else?

n Do you capitalize class names but not instance
names?

n Remember, the goal is to allow you to spend
more time on the hard and interesting stuff

