
1

Quality Assurance:
Early Work Items

Introduction: Ian King

l Software Test Lead, Microsoft Corporation
l Manager of Test Development for Windows

CE Base OS (kernel, drivers, file systems)
l Previous projects at Microsoft:
l MSN 1.x online service, Site Server 3.0,

TransPoint online service, Speech API 5.0

l Previously: business analyst, Pacific Telecom

Introduction to QA concepts

l QA, QC and testing
l Quality Assurance: making it right the first time
l Quality Control: making it right every time (i.e. in

production)
l QA and QC both include testing as an activity

What is the ‘value add’ of QA?

l Classic research: fixing a defect is cheaper
the earlier you catch it
l $: found in spec process
l $$: found during implementation
l $$$: found during post -implementation testing
l $$$$: found in the field
l QFE, service packs, product recalls, lawsuits
l Customer confidence

‘Make It Didn’t Happen’

l The best bug is the one that was never born!
l QA is about process

l Design review
l Implementation review
l Structured testing and evaluation
l Instrumentation/testability
l Best practices

l QA does not mean bodies: Pacific Telecom
l Lesson of History: good process leads to fewer

defects

The deliverable of QA

l QA delivers information
l What is known about the quality of the code?
l What are the risks of known defects?
l What is not known, i.e. untested?
l What risks may arise from unknown defects?
l E.g. “We didn’t test for malicious use”

l “Bearer of bad news”
l “Validation of the vision”

2

Scaling to the project

l Large project
l Individual design/programming and QA teams
l Another team to coordinate and administer

l Medium-sized project
l QA often assumes coordination role

l Small/solo project
l Develop ‘functional schizophrenia’
l Write it down

QA is everyone’s job!

…testing is only one part.

What does QA do early in the
development cycle?

l Publish (and promote) QA requirements
l Review design work
l Develop testing strategy

Establish QA Requirements

l Statement of requirements
l Feature specifications
l Implementation specifications
l Design change process
l Development schedule
l Build process
l Developer practice
l Defect process
l Release criteria

Statement of Requirements:
Why are we here?

l Who is the customer?
l What problem are we solving for the

customer?
l Should NOT include:
l Feature details
l Implementation details

Feature Specifications

l What will we make to solve the customer’s
problem?

l Does not prescribe implementation
l Descriptive:
l Workflow
l Actor
l Interface

3

Implementation specifications

l Typically for large projects, but always
beneficial

l How is a feature implemented?
l Details of resource usage, exception handling,

use of published standards, etc.
l Dependency on other feature implementation
l Dependency on external factors
l Development environment (SDKs)
l Other products’ modules (e.g. MSXML)

Design Change Process

l How are design changes documented?
l DCR vs. “bug”

l How are change decisions made?
l When has “the ship sailed”? Design Freeze

Development Schedule

l When will specs be complete?
l When will code be available?
l When will features be complete?
l When will code be stable?
l Beta releases?
l Leave enough time for the endgame:
l Complete test pass on Release Candidate
l Test of final installation media (may include digital

signing, release notes)

To beta, or not to beta

l Quality bar for beta release: features mostly
work if you use them right

l Pro:
l Get early customer feedback on design
l Real-world workflows find many important bugs

l Con:
l Do you have time to incorporate beta feedback?
l A beta release takes time and resources

Build Process

l Source control
l Undo the ‘oops

l Centralized build
l Be sure everyone is testing the same bits
l Avoid platform dependencies (msvcrtd)

l How often are new builds generated?
l Periodic
l Event-Driven

l Configuration management

Developer Practice

l Private builds
l Buddy builds
l Code review
l Code analysis tools
l Unit testing

4

Defect Process

l Why are defects tracked?
l How are defects tracked?
l What is the lifecycle of a bug?
l How are defects prioritized?
l Controlled check-ins/triage process
l Defect analysis:
l Defect source analysis
l Root cause analysis

Release Criteria

l When are we done?
l Indicators of completeness:
l Quantity of defects being found
l Severity of defects being found
l Completeness of testing

Review Design Work

l Are these documents sufficient to scope the
project?

l Are they logically consistent?
l Is the project testable?
l Test hooks, registry entries, compiler directives
l Instrumentation

l Does the project address the stated
requirements?

Review Design Work (con’t.)

l Evaluate use scenarios
l Sensible control flows?
l Features appropriate to use? (E.g. quiesce

server)

l Evaluate failure scenarios
l Meaningful error feedback
l Single points of failure
l Cascading failures

l Understand dependencies

Developing Test
Strategy

Elements of Test Strategy

l Test specification
l Test plan
l Test harness/architecture
l Test case generation
l Test schedule

5

Test Specifications

l What questions do I want to answer about this
code? Think of this as experiment design

l In what dimensions will I ask these questions?
l Functionality
l Security
l Reliability
l Performance
l Scalability
l Manageability

Test Plans

l How will I ask my questions? Think of this as the
“Methods” section

l Understand domain and range
l Establish equivalence classes
l Address domain classes

l Valid cases
l Invalid cases
l Boundary conditions
l Error conditions
l Fault tolerance/stress/performance

Test Harness/Architecture

l Test automation is nearly always worth the
time and expense

l How to automate?
l Commercial harnesses
l Roll-your-own (TUX)
l Record/replay tools
l Scripted harness

l Logging/Evaluation

Test Cases

l Actual “how to” for individual tests
l Expected results
l One level deeper than the Test Plan
l Automated or manual?
l Environmental/platform variables

Test Schedule

l Phases of testing
l Unit testing (may be done by developers)
l Component testing
l Integration testing
l System testing

l Dependencies – when are features ready?
l Use of stubs and harnesses

l When are tests ready?
l Automation requires lead time

l The long pole – how long does a test pass take?

Where The Wild Things Are:
Challenges and Pitfalls

l “Everyone knows” – hallway design
l “We won’t know until we get there”
l “I don’t have time to write docs”
l Feature creep/design “bugs”
l Dependency on external groups

