CSE 403
Lecture 7

How to fail at delivering software

= Due Monday, October 21

= Generate a random integer x in the
range [1,15]

= Analyze to what extent chapter x of
Mythical Man-Month is relevant in 2002

= Expected length, 3 pages

= ldentify common problems which lead
to software projects failing

= Understand risk management
techniques

It's not just software projects

= Tacoma Narrow’s Bridge
= The Kingdome
= UW EECS Building

= Software projects have a reputation for
failure
= Probably well deserved
= Many examples of massive cost over runs,
release delays and cancellations

A Project Failure

= Not delivering working program on
targeted date
= Overrun on time/budget
= Under delivery of functionality or quality




= Project starts out fine, with a few minor
changes in requirements, delays of
supporting activities and changes in
personnel

= Coding proceeds at a good rate with

most modules almost working at the
point when the system is to integrated

= Integration reveals incompatibility between
components

= Integration reveals severe bugs in
components

= Unexpected hardware or software change

= And a few random disasters
= Source code lost, key people directed to other

tasks, sudden changes in requirements or
schedule

= Devs code like hell

= Fixing and patching bugs

= Significant changes in architecture or functionality
on-the fly

= Test and documentation held up

= “The build is broken — | can’t do anything”
= Long hours

= Negative team dynamics

= Damage control activities

= Substandard product shipped

= “It’s just version 1.0 — we can issue an
upgrade”

= Schedule shifts
= Project cancelled or downgraded

= McConnell, Rapid Development
= People related mistakes
= Process related mistakes
= Product related mistakes
= Technology related mistakes

S\ Peopls_Esues (high level)

= Personnel management
= Functioning team
= Relationship with customer
= Management issues
= Management support and competence




Motivation

Weak personnel
Problem employees
Heroics

Adding people to a
late project

Crowded offices

Friction between dev
and customers

= Unrealistic
expectations

= Lack of sponsorship

= Lack of stakeholder
buy-in

= Lack of user input

= Politics over
substance

= Wishful thinking

Process issues (high level)

= Accurate planning
= Realistic scheduling
= Contingency planning

= Paying attention to all stages of product
development

Optimistic schedules
Insufficient risk
management
Contractor failure

Insufficient planning
Abandonment of
planning under pressure
Wasted time in “fuzzy
front end”
Shortchanged upstream
activities

= Inadequate design

= Shortchanged QA

= Insufficient
management controls

= Premature convergence

= Omitting necessary
tasks from estimates

= Planning to catch up
later

= Code-like-hell
programming

= Requirements gold-plating
= Feature creep
= Developer gold-plating
= Push-me, pull-me negotiation
= Adding new tasks when schedule slips
= Research-oriented development

= Sliver-bullet syndrome

= Overestimating savings from new tools
or methods

= Switching tools in the middle of a
project
= Lack of automated source-code control

= To what extent are these problems
specific to software projects?

= Are there characteristics of software
projects that make them more likely to
occur?

= Why do people make the same dumb
mistakes over and over again?




