
1

CSE 403
Lecture 7

How to fail at delivering software

Writing assignment

n Due Monday, October 21
n Generate a random integer x in the 

range [1,15]
n Analyze to what extent chapter x of 

Mythical Man-Month is relevant in 2002
n Expected length, 3 pages

Lecture goals

n Identify common problems which lead 
to software projects failing

n Understand risk management 
techniques

It’s not just software projects 
that fail

n Tacoma Narrow’s Bridge
n The Kingdome
n UW EECS Building

Software project failures

n Software projects have a reputation for 
failure
n Probably well deserved
n Many examples of massive cost over runs, 

release delays and cancellations

Project Failure

n Not delivering working program on 
targeted date
n Overrun on time/budget
n Under delivery of functionality or quality



2

All to common case

n Project starts out fine, with a few minor 
changes in requirements, delays of 
supporting activities and changes in 
personnel

n Coding proceeds at a good rate with 
most modules almost working at the 
point when the system is to integrated

Then everything goes wrong

n Integration reveals incompatibility between 
components

n Integration reveals severe bugs in 
components

n Unexpected hardware or software change
n And a few random disasters

n Source code lost, key people directed to other 
tasks, sudden changes in requirements or 
schedule

What happens next

n Devs code like hell
n Fixing and patching bugs

n Significant changes in architecture or functionality 
on-the fly

n Test and documentation held up
n “The build is broken – I can’t do anything”

n Long hours
n Negative team dynamics
n Damage control activities

Day of reckoning

n Substandard product shipped
n “It’s just version 1.0 – we can issue an 

upgrade”

n Schedule shifts
n Project cancelled or downgraded

Classic Mistakes

n McConnell, Rapid Development
n People related mistakes
n Process related mistakes
n Product related mistakes
n Technology related mistakes

People issues (high level)

n Personnel management
n Functioning team

n Relationship with customer
n Management issues

n Management support and competence



3

People related mistakes

n Motivation
n Weak personnel
n Problem employees
n Heroics
n Adding people to a 

late project
n Crowded offices
n Friction between dev 

and customers

n Unrealistic 
expectations 

n Lack of sponsorship
n Lack of stakeholder 

buy-in
n Lack of user input
n Politics over 

substance
n Wishful thinking

Process issues (high level)

n Accurate planning
n Realistic scheduling
n Contingency planning

n Paying attention to all stages of product 
development

Process related mistakes
n Optimistic schedules
n Insufficient risk 

management
n Contractor failure
n Insufficient planning
n Abandonment of 

planning under pressure
n Wasted time in “fuzzy 

front end”
n Shortchanged upstream 

activities

n Inadequate design
n Shortchanged QA
n Insufficient 

management controls
n Premature convergence
n Omitting necessary 

tasks from estimates
n Planning to catch up 

later
n Code-like-hell 

programming

Product related mistakes

n Requirements gold-plating
n Feature creep
n Developer gold-plating
n Push-me, pull-me negotiation

n Adding new tasks when schedule slips

n Research-oriented development

Technology related mistakes

n Sliver-bullet syndrome
n Overestimating savings from new tools 

or methods
n Switching tools in the middle of a 

project
n Lack of automated source-code control

Questions

n To what extent are these problems 
specific to software projects?

n Are there characteristics of software 
projects that make them more likely to 
occur?

n Why do people make the same dumb 
mistakes over and over again?


