
1

CSE 403, Software Engineering
Lecture 6

Non-functional specification

UW CSE Colloquium  10/10/02

n Agnes Kwan (UW CSE '82)

"The one thing I didn't learn in 
school was how to gather 
requirements from users"

Today

n Complete discussion of requirement 
representation

n Non-functional requirements

Recap from Wednesday

n Multiple customers for requirements
n Multiple representations of 

requirements

n Process for managing requirements

Redundancy: Good or bad?

n Multiple forms of documentation
n Used for different audiences or views

n But risk of inconsistency

n Functional spec and user spec
n Should describe the same thing!

n But what if they differ
n Isn't that Test's job?

n Development principle
n Avoid computing the same thing in multiple places

Brooks on flow charts

n The flow chart is the most thoroughly 
oversold piece of program documentation

n I have never seen an experienced 
programmer who routinely made detailed 
flow charts before beginning to write 
programs.  Where organization standards 
require flow charts, these are invariably done 
after the fact.



2

Flow charts

n "The emperor has no clothes"
n Formal processes

n Many processes are onerous and 
unpleasant to follow – but enhance overall 
product quality

n Some are without value, and should be 
dropped

n Process is not the end in itself

User requirements

Business 
Requirements

User 
Study

Use Cases
User 
Requirements

Functional 
RequirementsRequirements 

Documentation
Non-functional 
Requirements

Non-functional requirements

n Requirements beyond user interaction 
with the system

n Kulak and Guiney
n Availability, cost of ownership, 

maintainability, data integrity, extensibility, 
functionality (?), installability, reuse, 
operability, performance, portability, 
quality, robustness, scalability

Non-functionality 
requirements

n Wiegers
n Performance requirements
n Safety requirements
n Security requirements
n Software quality attributes

Safety requirements

n Safety critical applications
n Where bugs can kill

n Famous cases
n Therac-25 radiation therapy machine
n US Air traffic control which failed in UK

n Reflected map on Greenwich Median

n US Aviation software failed in Israel
n Encountered negative altitudes over Dead Sea

Safety critical systems

n Very high cost of failure
n Software component of a large system

n e.g. nuclear reactor

n Characteristics of software lead to 
failures

n Safety requirements
n Low probability of failure (risk analysis)
n Understood failure modes



3

Software Safety

n Safety vs. Reliability

n System hazard analysis
n High risk tasks
n Safety critical operator errors

n Design of Human-Machine Interface

Safety Reliability

Security requirements

n Applications are run in a hostile world
n Application compromise vs. system 

compromise
n Example requirements

n Only authenticated users can change data
n Application can change security permissions or 

execute programs
n Malicious user cannot crash system with bad data

n Threat analysis

Security requirements for 
multiplayer games

n Cheating ruins game play (and 
consequently market)

n Threats
n Players introducing counterfeit weapons
n Sending packet of death across network
n Using profiling tools to detect areas of 

activity in dungeons

Threat modeling

n The STRIDE Threat Model
n Spoofing identity
n Tampering with data
n Repudiation

n Allow users to deny having performed actions

n Information disclosure
n Denial of service
n Elevation of privilege

Useful references

n Writing Secure Code, Michael Howard 
and David LeBlanc
n Good book, but strongly oriented towards 

Windows

n Safeware: System Safety and 
Computers, Nancy Leveson
n Defines the field of software safety


