
1

CSE 403, Software Engineering
Lecture 4

Documenting and Using
Requirements

Today

n Representation of requirements
n Use of requirements
n Key parts of the discussion will

(probably) be about process, not
artifacts

n Non-functional requirements

User requirements

Business
Requirements

User
Study

Use Cases
User
Requirements

Requirements
Documentation

Who are requirements for?

n Customer
n To know what they are getting

n Management
n To know what they are sponsoring

n Marketing
n To know what they are selling

n Test
n To know what they are testing

n Dev
n To know what they are building

Managing the requirements
process

n Recognizing requirements documents
n Process for updating requirements
n Tracking process for requirements

changes
n Arbitration process for resolving

ambiguity and inconsistency

Documenting requirements

n Multiple representations are probably
needed

n Contradictory goals
n Conciseness vs. completeness
n Formality vs. comprehensibility

2

Representations for
requirements

n Requirement lists
n Diagrams

n A picture is worth a thousand words
n Entity Data Diagrams
n Data Flow Diagrams
n State Charts
n Activity Diagrams

Unified Modeling Language

n UML (1997)
n Object diagrams
n Behavioral Notations
n Diagram notations

n Use case diagrams
n Interaction diagrams
n Activity diagrams
n Statechart diagrams

Window
origin
size
open()
close()
move()
display()

IUnknown

IPersistable

Approaches to UML

n "Whiteboard UML"
n Use notation for expository tool

n Flexible use
n Partial tool support

n "Formal UML"
n Substantial tool support
n Restrictive

n Assigning semantics very challenging
n 37 different semantics for Statecharts

UI Mockup

n Advantages n Disadvantages

Write the user's manual first

n Advantages n Disadvantages

Redundancy: Good or bad?

n Multiple forms of documentation
n Used for different audiences or views

n But risk of inconsistency

n Functional spec and user spec
n Should describe the same thing!

n But what if they differ
n Isn't that Test's job?

n Development principle
n Avoid computing the same thing in multiple places

3

Brooks on flow charts

n The flow chart is the most thoroughly
oversold piece of program documentation

n I have never seen an experienced
programmer who routinely made detailed
flow charts before beginning to write
programs. Where organization standards
require flow charts, these are invariably done
after the fact.

Flow charts

n "The emperor has no clothes"
n Formal processes

n Many processes are onerous and
unpleasant to follow – but enhance overall
product quality

n Some are without value, and should be
dropped

n Process is not the end in itself

User requirements

Business
Requirements

User
Study

Use Cases
User
Requirements

Functional
RequirementsRequirements

Documentation
Non-functional
Requirements

Non-functional requirements

n Requirements beyond user interaction
with the system

n Kulak and Guiney
n Availability, cost of ownership,

maintainability, data integrity, extensibility,
functionality (?), installability, reuse,
operability, performance, portability,
quality, robustness, scalability

Non-functionality
requirements

n Wiegers
n Performance requirements
n Safety requirements
n Security requirements
n Software quality attributes

Safety requirements

n Safety critical applications
n Where bugs can kill

n Famous cases
n Therac-25 radiation therapy machine
n US Air traffic control which failed in UK

n Reflected map on Greenwich Median

n US Aviation software failed in Israel
n Encountered negative altitudes over Dead Sea

4

Safety critical systems

n Very high cost of failure
n Software component of a large system

n e.g. nuclear reactor

n Characteristics of software lead to
failures

n Safety requirements
n Low probability of failure (risk analysis)
n Understood failure modes

Security requirements

n Applications are run in a hostile world
n Application compromise vs. system

compromise
n Example requirements

n Only authenticated users can change data
n Application can change security permissions or

execute programs
n Malicious user cannot crash system with bad data

n Threat analysis

Security requirements for
multiplayer games

n Cheating ruins game play (and
consequently market)

n Threats
n Players introducing counterfeit weapons
n Sending packet of death across network
n Using profiling tools to detect areas of

activity in dungeons

